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Abstract

The motivation behind this thesis is censorship circumvention.
Snowflake is a technology that is used today to provide access to the free
and open Internet for people located in areas that practice censorship.
With users adopting the system, censors have spent an effort at trying to
detect and block its traffic. We have seen that censors have been able to
do so by fingerprinting the DTLS implementation that is produced by the
Pion library used by Snowflake. The aim of this thesis is to reduce the
distinguisability of said DTLS library. We developed a tool named, dfind
for analyzing and finding passive field-based fingerprints of DTLS. This
tool was validated using a data set with known fingerprints, and found that
the extensions field was especially vulnerable for identification. To combat
such fingerprints, we implemented covertDTLS, a Go library inspired
by uTLS. Our module extends the Pion DTLS library with handshake
hooking to offer mimicry and randomization features. To ensure that
mimicking remains up-to-date, we developed a novel continuous delivery
workflow for generating fresh DTLS-WebRTC handshakes from popular
browsers. Using covertDTLS with Snowflake resulted in us not being able
to find any fingerprints. We conclude that mimicking and randomization
are effective countermeasures against passive, stateless, and field-based
fingerprinting.





Sammendrag

Motivasjonen bak denne avhandlingen er å omgå sensur.
Snowflake er en teknologi som i dag brukes av mennesker i områder som
praktiserer sensur for å få tilgang til det frie og åpne Internett. Ettersom
systemet har vist seg å være effektivt, har sensorer brukt ressurser på å
prøve å oppdage og blokkere dens trafikk. Vi har sett at sensorer har vært
i stand til å gjøre dette ved å finne og blokere fingeravtrykket av DTLS-
implementeringen som produseres av Pion-biblioteket brukt av Snowflake.
Målet med denne avhandlingen er å redusere identifiserbarheten til nevnte
DTLS-bibliotek. Vi utviklet et verktøy, kalt dfind, for å analysere og
finne passive feltbaserte fingeravtrykk av DTLS. Dette verktøyet ble
validert ved bruk av et datasett med kjente fingeravtrykk, og fant at
extensions-feltet var spesielt sårbart for identifikasjon. For å bekjempe
slike fingeravtrykk implementerte vi covertDTLS, et Go-bibliotek inspirert
av uTLS. Vår modul utvider Pion DTLS-biblioteket med imitasjons- og
randomiseringsfunksjoner. For å sikre at imitasjonen forblir oppdatert,
utviklet vi en ny kontinuerlig leveringsprosess for å generere ferske DTLS-
WebRTC-håndtrykk fra populære nettlesere. Bruk av covertDTLS med
Snowflake resulterte i at vi ikke klarte å finne noen fingeravtrykk. Vi
konkluderer med at imitasjon og randomisering er effektive mottiltak mot
passive, tilstandsfrie og feltbaserte fingeravtrykk.
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Chapter1Introduction

This chapter starts by presenting the motivation behind this thesis, which is adapted
from the specialization project preceding this work [1]. Following the motivation,
we define two research questions that we aim to answer. We then introduce key
communities, some of which we have collaborated with, working on areas of open-
source software and censorship circumvention. The chapter closes with a discussion
about ethics, where some concerns are brought to light and an ethical stance is given.

1.1 Motivation

The Internet facilitates global sharing of information and ideas, such freedom of
opinion and expression are protected by Article 19 of the United Nations Universal
Declaration of Human Rights (UDHR) [2]. However, there are diverse attempts by
censors (e.g. governments, institutions, and service providers) to violate these rights
by regulating, monitoring, or, in some cases, by entirely stifling access to the open
Internet [3–5]. This phenomenon, known broadly as Internet censorship, represents
both a technical challenge and a significant global societal concern, impacting free
speech and human rights at large. Internet is even being censored in regions often
considered “free”, such as the European Union (EU) [6] and Norway [7]. These are
concerns shared by the Internet community at large, which is exemplified with the
creation of the Human Rights Protocol Considerations Research Group (HRPC)1.
The HRPC is doing ongoing research on human rights network protocol design [8]
and has released Request For Comments (RFC) 8280 [9] on “Human Rights Protocol
Considerations”, both of which encourage censorship resistance in protocols.

The Onion Router (Tor) Project2 is a digital rights non-profit organization that
is on the forefront of researching and developing open-source software providing
anonymity and privacy for users of the Internet. Their initial goal was to implement

1https://hrpc.io/
2https://www.torproject.org/
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2 1. INTRODUCTION

onion routing, a distributed network where traffic hops across multiple nodes, applying
encryption at each step, before reaching its intended destination. This renders the
original sender and receiver of the data difficult to trace, thus offering anonymity.
Today, the project also develops the Tor browser and offers systems to circumvent
forms of Internet censorship.

Censors see anonymity as a threat, and as they have grown tech savvier, they
have begun detecting and blocking traffic that appears to be routed through the
Tor network. This has led to the introduction of Pluggable Transports in Tor [10].
Pluggable Transports obfuscate Tor traffic, making it appear indistinguishable from
regular Internet traffic, thereby allowing it to bypass censoring mechanisms. This
disguise ensures that users can access the open Internet even from heavily censored
regions without raising red flags.

One of the Pluggable Transport that has had a lot of traction lately is the
Snowflake3[11] censorship circumvention system (see Figure 1.1). Operating on the
principle of volunteerism and decentralization, Snowflake employs ephemeral proxies
run by volunteers using Web Real-Time Communication (WebRTC) peer-to-peer
connections. So far, censors have not shown willingness to block WebRTC as a
protocol [11], which allows Snowflake to blend in with the long tail of other traffic.

Figure 1.1: Estimated average simultaneous Snowflake users by day, from Bocovich
et al. [11]

No censorship circumvention system is perfect, and Snowflake has been successfully
blocked at multiple occasions. An example of this is Russia blocking Snowflake in
May of 2022 [12]. They did this by fingerprinting unique ClientHello messages in
the Datagram Transport Layer Security (DTLS) protocol which is used by WebRTC.
This method has previously been discussed in literature and was a known attack
vector [13]. Reactive measures have been deployed by the Tor project to remove the

3https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake
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distinguishing ClientHello fingerprint in the DTLS implementation by Pion4, but
other weaknesses may still exist [14].

Transport Layer Security (TLS), being a similar protocol to DTLS, has been
studied for use in censorship circumvention. Frolov et al. [15] found multiple ways
of fingerprinting TLS, including the ClientHello method used to block DTLS in
Snowflake. To handle this problem, the researchers developed a library called uTLS5

that aims to protect against fingerprinting. However, no such library exists for DTLS,
which concerns the team behind and actively developing Snowflake:

“Owing to practical considerations, Snowflake’s defenses to DTLS fingerprinting
are not very robust, and are reactive rather than proactive. In the realm of TLS
one may use uTLS, but there is as yet no equivalent for DTLS. The present way of
altering DTLS fingerprints in Snowflake is to submit a patch to Pion when a feature
used for fingerprinting is identified.”, Bocovich et al. [11].

1.2 Research questions

Following the presented motivation, we define the following research questions for
this thesis:

RQ1: What kind of fingerprints can be used to identify different
implementations of DTLS?

RQ2: How can we create a fingerprint-resistant implementation
of DTLS for usage in Snowflake?

1.3 Communities

This section shortly describes some communities and initiatives that have been
invaluable during working on this thesis and for protecting the free and open Internet
at large. We have directly collaborated with some of these communities, as censorship
circumvention is a community-effort.

The Tor Project organization is divided into multiple teams developing different
technologies for Internet freedom, where the anti-censorship team6 is the one responsi-
ble for Snowflake and making Tor reachable anywhere in the world. During this thesis
we have been part of that team, participating in many of the weekly public Internet

4https://github.com/pion
5https://github.com/refraction-networking/utls
6https://gitlab.torproject.org/tpo/anti-censorship

https://github.com/pion
https://github.com/refraction-networking/utls
https://gitlab.torproject.org/tpo/anti-censorship


4 1. INTRODUCTION

Relay Chat (IRC) meetings7, contributing to discussions and receiving feedback on
ideas.

Pion is a community-owned organization working on cross platform open-source
software for real-time media and data communication. All their projects are written
in Go and the main focus is implementing the WebRTC protocol stack. Snowflake
adopts the Pion implementation of both DTLS and WebRTC. During this thesis, we
contributed to their DTLS implementation, adding handshake hooking features.

Other important initiatives on the field are the Open Observatory of Network
Interference (OONI)8 and Censored Planet9. Both aim to measure and analyze
internet censorship, and are valuable sources of data for researchers on the area.

Net4People BBS10 is a multilingual open forum for people to share research,
news and have discussions about Internet censorship circumvention. It is a highly
valuable bulletin-board for gathering information about the needs of users affected
by censorship, and getting an up-to-date view of the current landscape.

1.4 Ethics

The purpose of this subsection is to discuss some of the ethical aspects related to
online anonymity and censorship circumvention. Its purpose is not to conduct a
rigorous philosophical analysis, but rather highlight ethical issues, different opinions
and set the stance of the thesis.

1.4.1 Anonymity

Snowflake is an enabling technology for accessing the Tor anonymity network. Even
though our focus is on Snowflake as a censorship circumvention system, we have to
take into consideration the ethical questions that arise with offering online anonymity.
The Tor anonymity network might conjure different associations. For some, it might
be a technology used to host illicit gun and malware markets, child sexual abuse
material (CSAM) and a place for extremist communities. For others, it is a technology
that facilitates freedom of expression without discrimination and is a critical tool
for protecting the identities of activists, journalists and whistle-blowers, like Edward
Snowden [16].

Nurmi et al. [17] have investigated CSAM availability, searches and its users on
the Tor network. In their paper, they critique top computer science venues for not

7https://meetbot.debian.net/tor-meeting/2024/
8https://ooni.org/
9https://censoredplanet.org/

10https://github.com/net4people/bbs

https://meetbot.debian.net/tor-meeting/2024/
https://ooni.org/
https://censoredplanet.org/
https://github.com/net4people/bbs
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enforcing their own ethical guidelines as a lot of research on anonymous networks
are accepted without mentioning the potential harms. They crawled onion websites
(services only on the Tor network with hidden IP addresses and location) over a
five-year period, and analyze 176.683 domains to find that one-fifth host CSAM (by
using text-based detection). Three prominent Tor search engines worked with the
researchers to display a questionnaire when their users searched for CSAM keywords.
Analyzing the answers from the intervention, they found that about half of the users
want to stop using such content and around two-thirds of those who are seeking help
have not received it. They conclude that there is an urgency to deploy public health
programs for CSAM users, where anonymous online therapy hosted on Tor is actively
sought and is having promising results.

The Tor Project has a official ‘FAQ’ page, which addresses conerns of abuse11:

“Tor’s mission is to advance human rights with free and open-source technology,
empowering users to defend against mass surveillance and internet censorship. [..]
we condemn the misuse and exploitation of our technology for criminal activity. It’s
essential to understand that criminal intent lies with the individuals and not the tools
they use. Just like other widely available technology, Tor can be used by individuals
with criminal intent. And because of other options they can use it seems unlikely that
taking Tor away from the world will stop them from engaging in criminal activity.
[..] Our refusal to build backdoors and censorship into Tor is not because of a lack
of concern. We refuse to weaken Tor because it would harm efforts to combat child
abuse and human trafficking in the physical world, while removing safe spaces for
victims online. Meanwhile, criminals would still have access to botnets, stolen phones,
hacked hosting accounts, the postal system, couriers, corrupt officials, and whatever
technology emerges to trade content.”

Offering total anonymity can be seen as removing accountability for persons doing
harmful actions online. The ethical discussion around non-accountability goes back
to Plato’s Republic with the Ring of Gyges [18, 19]. In the Republic, the wearer
of the mythical ring gains power to become invisible at will. Plato uses the story
to explore the idea that people act justly only because they fear the consequences
of being caught and punished, suggesting that if they could act without being seen
(anonymous), they might commit unjust acts freely.

R. Bodle gives an ethical justification for protecting online anonymity in “The
ethics of online anonymity or Zuckerberg Vs. ‘Moot’ ” [19]. He argues that focusing
only on the harms of anonymity is short-sighted and obscures the benefits. The
approach taken by Bodle, is a method that integrates various ethical and meta-ethical
theories. This pluralistic method combines Utilitarianism and social utility with

11https://support.torproject.org/abuse/

https://support.torproject.org/abuse/


6 1. INTRODUCTION

Kantian principles, like the rights-based view. Bodle suggests that anonymity should
be recognized as an instrumental good, essential for enabling other rights such as
free speech and privacy, and thus should be protected.

Acknowledging that there are unwanted effects of offering total anonymity online,
and that there is a need for discussion and research (which falls out of the scope
of this thesis), we take the stance of anonymity being an attribute to strive for in
the Internet. A democratic society requires anonymity to mobilize participation of
all groups, including marginalized and vulnerable populations, political dissidents,
whistle-blowers and citizens who wish not to be under surveillance [19].

1.4.2 Censorship circumvention

For ethical questions regarding censorship circumvention, Corrigan-Gibbs et al. [20]
draw lessons from humanitarian aid, to help avoid repeating the same mistakes of
failed humanitarian interventions. In this section we echo these lessons and relate
them to Tor, Snowflake and this thesis.

◦ “Impartiality is impossible. [..] Internet freedom organizations that provide tools
and trainings to activists, bloggers, and civil society activists must appreciate
that who they are teaching is as important as what they are teaching”. We
are seeing non-profit and non-governmental organizations with experience in
humanitarian aid adopting technologies from the Tor project, such as Amnesty
International12. Our stance is to trust humanitarian organizations to teach
these technolgies to people living under extreme conflict and violent oppression,
but be opportunistic with teaching people in more democratic areas (and
support any and all efforts at this).

◦ “It’s hard to consent when you don’t understand”. The peer-to-peer nature of
Snowflake proxies allows the user and proxy to know each other’s IP addresses.
So a censor could, in theory, run a campaign hosting many proxies and collect
the IP addresses of people accessing Tor, trying to find users inside their
networks. A censor would not know exactly what they are doing, but the act
of accessing the free Internet might by itself be a punishable offense. People
might not be aware of this, and users should be educated about this danger, so
to not feel a false sense of security.

◦ “Our tools promote our cultural norms”. There are different interpretations of
the UDHR, and Internet freedom technologies reflect our own set of cultural
values. Corrigan-Gibbs et al. conclude that it is not unethical to promote
value-laden human-rights, but encourage transparency of the values of the

12https://securitylab.amnesty.org/amnesty-on-tor/

https://securitylab.amnesty.org/amnesty-on-tor/
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researchers of these technologies, we give our stance in the final paragraph of
section 1.4.1.

◦ “Impact is elusive“. Tor is collecting metrics on how many users from a given
location using the different pluggable transports per day13. However, we do
not know if those users actually feel safe and free to speak their mind.

Corrigan-Gibbs et al. state: “Defending human rights does not automatically
put us above ethical censure.” Indeed, with this section we tried to confront and
acknowledge ethical issues, and we encourage researchers in the field to do the same.

13https://metrics.torproject.org/

https://metrics.torproject.org/




Chapter2Background

In this chapter we present relevant background and split it in two main parts. Firstly,
preliminary knowledge on enabling and related technologies to Snowflake and network
protocol fingerprinting is provided. Secondly, state-of-the-art research is described
for the field of network traffic fingerprinting, with the main focus on Snowflake and
DTLS.

2.1 Preliminaries

This section presents technologies, definitions and terms central to this thesis. It
gives a top-down view of how the concepts fit together, starting with censorship
circumvention as a general topic, continuing to explain Snowflake, and its enabling
protocols, WebRTC and DTLS. Finally, fingerprinting and fingerprint resistance
approaches are described.

2.1.1 Censorship and circumvention

A censor aims to perform two actions, detection and blocking [21]. Detection involves
classifying traffic to determine which should be permitted or denied. After detecting
prohibited communication, the censor blocks it by, for example, injecting TCP
RST packets [3]. Effective censorship requires both accurate detection and low-cost
blocking - without blocking, it would only be surveillance. Errors can occur, leading
to false negatives (missed blocks) or false positives (incorrect blocks). Censorship
circumvention uses obfuscation techniques to complicate the censor’s classification
task, blending in with benign traffic, increasing its error rate and operational costs
in computation, time and money.

Collateral damage happens when censorship blocks necessary or desirable re-
sources, like critical websites or tools, causing civil discontent and reduced productiv-
ity. This forces the censor to balance blocking undesirable communications against
avoiding collateral damage. The main goal of effective circumvention is to raise the

9
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censor’s error rate, making blocking too expensive and unacceptable. How sensitive
a censor is to collateral damage varies based on the censor’s resources, motivations,
and the importance of the blocked content to the affected population.

Censors typically employ either blocklists or acceptlists approaches to control
internet access. The blocklist approach blocks specific sites, addresses, or content
deemed undesirable, allowing all other traffic. This method is more common [3]
because it is less disruptive and easier to implement, but it requires constant updates
to remain effective against new circumvention techniques. On the other hand, the
acceptlist approach permits only pre-approved sites and services, blocking everything
else. While this method offers tighter control and reduces the need for continuous
updates, it is highly restrictive and can significantly disrupt legitimate internet use,
leading to greater collateral damage.

2.1.2 Snowflake

Figure 2.1: Architecture of Snowflake [1]

The Snowflake circumvention system involves three key participants: the client,
proxies, and a broker. The architecture of Snowflake, depicted in Figure 2.1, highlights
its main components and communication channels. The client is a user operating
Snowflake within a region where a censor is blocking traffic to specific destinations
(IP addresses). To bypass these IP blockages, the client routes its traffic through one
of the proxies using an encrypted WebRTC data channel. These proxies are operated
by volunteers with unblocked IPs that have access to the open internet. The client
contacts the broker to locate an available proxy in a process called rendezvous.

To initiate contact with the broker, the client must use an indirect, unblock-
able channel to bootstrap into Snowflake. There are three supported methods for
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rendezvous: domain fronting1, Accelerated Mobile Pages cache and Simple Queue
Service [11]. Once the indirect channel is established, the client communicates with
the broker, which matches the client with an idle proxy from its pool, based on
self-reported Network Address Translation (NAT) types. The broker then facilitates
the exchange of Session Description Protocol (SDP) [22] offers and answers between
the client and proxy, as specified by WebRTC.

Following rendezvous, the client and proxy must navigate NAT traversal during
the connection establishment phase. Devices behind NATs and firewalls typically
only allow outgoing connections initiated by the client. To address this, WebRTC
employs the Interactive Connectivity Establishment (ICE) [23] procedure, which
opens direct communication through NATs and firewalls. The ability of a client and
proxy to establish a connection is determined by their NAT types, using Session
Traversal Utilities for NAT (STUN) [24] and Traversal Using Relays around NAT
(TURN) [25] servers within the ICE procedure. Upon successfully establishing a
connection, the client and proxy can exchange traffic.

The final phase of Snowflake involves data transfer, which includes a persistent
session layer and an ephemeral data channel. A persistent session is maintained
using Turbo Tunnel [26], which adds sequence numbers and acknowledgments to data
exchanged between the client and a bridge. This ensures that if the current proxy
becomes unavailable, the data will be retransmitted through a new proxy. For the
ephemeral channel, WebRTC data channels are used, allowing for the transmission
of encrypted and integrity-protected data via DTLS.

2.1.3 Datagram Transport Layer Security (DTLS)

DTLS is a protocol designed by the Internet Engineering Task Force (IETF) to provide
secure communication for datagram-based applications, similar to how Transport
Layer Security (TLS) secures applications over TCP. While DTLS is based on TLS,
their key differences are due to the nature of the underlying transport protocols. As
a consequence of operating over UDP, DTLS has additional mechanisms to handle
packet loss, reordering, duplication and fragmentation. The protocol is widely used
in applications where low-latency and real-time communication are critical, such as
Voice-over-IP, Internet of Things (IoT) and Virtual Private Networks (VPN) [27].

DTLS comprises two primary components: the handshake and the record layer.
The DTLS handshake is responsible for negotiating cryptographic algorithms and
keys between the client and server. Once these parameters are established, the DTLS

1It is worth noting that the anti-censorship team have to constantly update the content providers
they use for domain fronting, as many of the providers are stopping their support of the service [11].
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record layer takes over, encapsulating the data from the upper layers into encrypted
records that are transmitted over UDP.

Client Server
------ ------

ClientHello --------> Flight 1

<------- HelloVerifyRequest Flight 2*

ClientHello --------> Flight 3*

ServerHello \
Certificate* \

ServerKeyExchange* Flight 4
CertificateRequest* /

<-------- ServerHelloDone /

Certificate* \
ClientKeyExchange \
CertificateVerify* Flight 5
[ChangeCipherSpec] /
Finished --------> /

[ChangeCipherSpec] \ Flight 6
<-------- Finished /

Figure 2.2: Message flights for the full DTLS 1.2 handshake [28]. Optional messages
and flights are indicated with an asterisk.

DTLS has undergone several iterations to enhance security and performance.
DTLS 1.0, specified in RFC 4347 [29] and released in 2006, provided the foundational
security features adapted from TLS 1.1 for use over UDP, including basic handshake
mechanisms and the use of cookies to prevent denial-of-service attacks. However,
it lacked support for newer cryptographic algorithms and was vulnerable to some
attacks discovered later.

DTLS 1.2, introduced in RFC 6347 [28] in 2012, built upon TLS 1.2. It incorpo-
rated stronger cryptographic algorithms like SHA-256, AEAD cipher suites for better
security and performance, and enhanced negotiation of cipher suites and extensions,
addressing some vulnerabilities of its predecessor. DTLS 1.2 is the most common
version deployed on the internet [27].
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The most recent version is DTLS 1.3, based on TLS 1.3. It features a streamlined
handshake that reduces the number of round-trips, lowering latency. This version
also provides default forward secrecy and elimination of outdated cryptographic
algorithms. DTLS 1.3 became a standard in 2022 with RFC 9147 [30], but has seen
little adoption.

Figure 2.2 shows the full DTLS 1.2 handshake. This process involves multi-
ple “flights” of messages exchanged between the two parties to negotiate security
parameters, authenticate each other, and establish shared secrets for encrypted
communication.

◦ Flight 1: The handshake begins with the client sending a ClientHello message
to the server, containing the protocol version, a randomly generated number
(ClientRandom), SessionID, supported cipher suites, compression methods,
and any relevant extensions such as Application-Layer Protocol Negotiation
(ALPN) and Supported Groups.

◦ Flight 2 (optional): To prevent denial-of-service attacks from spoofed IP
addresses, the server may respond with a HelloVerifyRequest message. It
includes a stateless cookie created as a HMAC of a secret, the client parameters
and IP. The client must echo back in a subsequent ClientHello message. This
step is optional but recommended to verify the client’s reachability and mitigate
resource exhaustion risks.

◦ Flight 3 (optional): Following the receipt of the optional HelloVerifyRequest,
the client resends the ClientHello message, this time including the server-
provided cookie. This resubmission proves the client is reachable at the IP
address from which the initial ClientHello was sent.

◦ Flight 4: Upon receiving the ClientHello, the server responds with a sequence
of messages: ServerHello, Certificate, ServerKeyExchange, CertificateRequest,
and ServerHelloDone. The ServerHello message includes the server’s chosen
protocol version, a randomly generated number (ServerRandom), SessionID,
chosen cipher suite, compression method, and any relevant extensions. The
Certificate message provides the server’s certificate chain, proving its identity.
If the selected cipher suite requires it, the ServerKeyExchange message contains
the server’s public key information necessary for key exchange. The Certifi-
cateRequest message, which is optional depending on the server’s security policy,
requests the client’s certificate for mutual authentication and provides a list of
supported signature algorithms. The ServerHelloDone message indicates the
end of the server’s initial handshake messages.

◦ Flight 5: The client then responds with its own sequence of messages: Certifi-
cate, ClientKeyExchange, CertificateVerify, ChangeCipherSpec, and Finished.



14 2. BACKGROUND

The Certificate message is sent if the server requested the client’s certificate.
The ClientKeyExchange message contains the client’s public key information or
pre-master secret, depending on the key exchange method. The CertificateVer-
ify message provides a signature over previous handshake messages using the
client’s private key, proving ownership of the certificate. The ChangeCipherSpec
message indicates that the client will switch to the newly negotiated cipher
suite and keys for subsequent messages. The Finished message, which is a hash
of the entire handshake up to this point and encrypted with the new session
keys, allows the server to verify that the handshake was not tampered with.

◦ Flight 6: The handshake concludes with the server sending its own Change-
CipherSpec and Finished messages. The ChangeCipherSpec message signifies
that the server will also switch to the newly negotiated cipher suite and keys.
The Finished message, similar to the client’s, is a hash of the entire handshake
encrypted with the new session keys, enabling the client to verify the integrity
of the handshake. The client and server can now send encrypted records to
each other.

To provide extra flexibility, DTLS utilizes extensions in the ClientHello and
ServerHello messages. The extension field can be of variable size, with a maximum
size of 2 bytes, allowing different amounts of extensions to be in any order. This is a
way to negotiate additional features without altering the core protocol. For example,
the ALPN extension allows clients and servers to indicate the application protocol to
be used over a secure connection during the handshake process. This ensures that
both parties settle on a specific protocol (such as HTTP/2 or HTTP/3) before any
data is transmitted. The Supported Groups extension provides a list of curve groups
so the client and server can agree on a group for the Elliptic-curve Diffie-Hellman
key exchange, ensuring compatibility and security. These extensions are specified in
various RFCs, often for both TLS and DTLS.

The Encrypted Client Hello (ECH) is an extension currently in draft (draft-ietf-
tls-esni-182) for TLS/DTLS that aims to enhance privacy and security by encrypting
the ClientHello message. This will protect privacy-sensitive information in other
extensions.

2.1.4 WebRTC

WebRTC enables peer-to-peer audio, video, and data sharing directly between
web browsers and mobile applications, making it ideal for applications like video
conferencing and live streaming. The protocol is being maintained by a working

2https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-18

https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-18


2.1. PRELIMINARIES 15

Figure 2.3: The WebRTC protocol stack

group at the Internet Engineering Task Force (IETF)3 and is documented as a
W3C recommendation4. WebRTC stitches together many existing single-purpose
technologies to make a suite of protocols - see Figure 2.3 for how the protocol stack is
layered. This subsection outlines WebRTC’s core components: signaling, connecting,
securing, and communicating.

◦ Signaling: WebRTC signaling involves the exchange of SDP messages, which
convey information about media capabilities and network configurations needed
to establish a connection. This process includes the exchange of offers and
answers between peers to negotiate session parameters and the transmission of
ICE candidates to facilitate network address discovery.

◦ Connecting: To establish a peer-to-peer connection, WebRTC employs the
ICE framework for NAT traversal. STUN servers help discover public IP
addresses and port mappings, while TURN servers relay traffic when direct
peer-to-peer connections are not possible. This combination ensures that peers
can connect despite the presence of NAT devices and firewalls.

◦ Securing: WebRTC uses DTLS to secure communications, encrypting data to
prevent eavesdropping and tampering. DTLS with Secure Real-Time Transport
Protocol (SRTP) is used for encrypting media streams. The SRTP keys
are negotiated during the DTLS handshake. Additionally, DTLS supports
certificate-based authentication, enabling peers to verify each other’s identities.

3https://datatracker.ietf.org/wg/rtcweb/documents/
4https://www.w3.org/TR/webrtc/

https://datatracker.ietf.org/wg/rtcweb/documents/
https://www.w3.org/TR/webrtc/
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◦ Communicating: WebRTC supports two primary types of communication:
media streams and data channels. Media streams, which include audio and
video, use the Real-time Transport Protocol (RTP) over SRTP to ensure secure
transmission, prioritizing quality and low latency for real-time communication.
Data channels, on the other hand, facilitate the transmission of arbitrary data
using SCTP over DTLS, offering reliability and flexibility for applications like
file sharing and text chat.

2.1.5 Fingerprinting

Network protocol fingerprinting is the process of identifying and classifying network
protocols based on their unique characteristics or patterns, similar to how fingerprints
uniquely identify individuals. These protocol-specific patterns enable the detection
and analysis of the communication protocols used within a network.

Guoqiang Shu and David Lee introduced a formal methodology for network
protocol fingerprinting, outlining a taxonomy that addresses the challenges of finger-
printing through three main components: active and passive experiments, fingerprint
discovery, and fingerprint matching [31].

Active fingerprinting involves engaging with the target system by sending specific
probes or queries and analyzing the responses to gather information about the
protocol and its implementation. While this method can be intrusive and may cause
some disruption to the target system, it is highly effective in extracting detailed
protocol information. Techniques commonly used in active fingerprinting include
delaying, dropping, modifying, or injecting packets into existing connections. An
example of a tool that employs active fingerprinting is nmap5, a widely used network
scanning utility.

On the other hand, passive fingerprinting relies on observing and analyzing
network traffic patterns without direct interaction with the target system. This
approach is less intrusive and does not risk disrupting the target system. However,
it may be less accurate than active fingerprinting. Passive fingerprinting utilizes
deep packet inspection (DPI) to examine protocol fields or analyze statistical traffic
patterns.

Fingerprint discovery involves systematically uncovering a fingerprint for an
unknown implementation. This process gathers comprehensive information to create
a unique identifier for the protocol. Discovery can be conducted with explicit guidance
from the protocol specification or implementation source code (white-box) or without
such guidance (black-box).

5https://nmap.org/

https://nmap.org/
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Fingerprint matching is the process of comparing collected fingerprints to deter-
mine if they originate from the same protocol implementation. This can be done
through exact one-to-one mapping or probabilistically, assessing the likelihood that
two fingerprints correspond to the same implementation.

2.1.6 Network traffic obfuscation

There are two main obfuscation techniques used in practice to combat fingerprinting:
mimicking and randomization [21].

Mimicking, also known as mimicry or steganography, aims to replicate the behavior
of a protocol. The goal is to make it challenging to distinguish between the genuine
protocol and the obfuscating protocol. Houmansar et al. [32] argue that mimicking
application layer protocols is particularly challenging and fundamentally flawed, a
criticism summarized by the phrase “The parrot is dead”. Perfect mimicry, using a
protocol as intended, is often referred to tunneling.

Randomization, often referred to as polymorphism, involves implementing random
protocol features to make the traffic appear dissimilar to any protocol or pattern
that a censor might block. The objective is to eliminate all statistical characteristics,
causing the traffic to resemble “junk” data. However, this approach can be ineffective
if the censor employs whitelist blocking, as the traffic would not match any approved
protocols. obfs4 6 is an example of a pluggable transport that employs randomization
for censorship circumvention.

2.2 State of the art

This section presents the state of the art on fingerprinting Snowflake and related
network protocols.

2.2.1 Detecting Snowflake

David Fifield and Mia Gil Epner [33] are the first publicly to explore ways of
fingerprinting parts of the Snowflake system in their paper “Fingerprintability of
WebRTC”. The authors conducted a manual analysis of different WebRTC applications
to identify features that could be used to fingerprint them. They examined the
traffic of Google Hangouts, Facebook Messenger, OpenTokRTC, Sharefest, and
Snowflake. Their findings revealed significant fingerprinting potentials in the DTLS
and STUN/TURN protocols used by WebRTC, including differences in cipher suites,
extensions, and certificate details. To answer how much WebRTC traffic exists in
the wild, they deployed a fingerprinting script for DTLS on a day’s worth of network

6https://gitlab.com/yawning/obfs4

https://gitlab.com/yawning/obfs4
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traffic from Lawrence Berkeley National Laboratory. Running this experiment, they
found only a handful of fingerprints and concluded that WebRTC traffic is relatively
scarce in real-world traces. Future work suggested enhancing their fingerprinting
script, expanding traffic analysis to more datasets, and developing automated tools
to analyze STUN and TURN protocols further.

The work of MacMillan et al. [13] at Princeton University is the most prominent
work on evaluating the indistinguishability of Snowflake by fingerprinting DTLS
handshakes. They collected the largest data set to date (which is publicly avail-
able7) with 6,500 handshakes of different WebRTC based applications. From the
ClientHello and ServerHello handshake messages, they extracted the length, message
sequence, fragment offset, DTLS version, SID length, cookie length, cipher suite
length, cipher suites, extension length, extensions and chosen cipher fields. To find
fingerprints they used one-hot-encoding to transform non-numeric header fields into
binary features and performed classification with the random forest machine learning
algorithm. They found multiple ways of fingerprinting Snowflake: sending the op-
tional HelloVerifyRequest message, offering the supported_groups extension in the
ServerHello message, and not offering the renegotiation_info in the ServerHello
message. Although their data set is publicly available, their classification software is
not. How they collected the data set is unclear and is never explained in their paper.

Chen et al. [34] extend the work from MacMillan et al. by using more machine
learning algorithms to perform fingerprinting of DTLS handshakes. They extracted
similar features as the previous work. For their data set, they generated traffic
from automated scripts and combined it with data set from MacMillan et al. After
evaluating the different algorithms they claim an average accuracy of 99.8%, only
requiring a few hundred handshakes. The random forest algorithm performed best
again, and the chosen cipher suite, fragment length and cipher suites fields ranked
the highest in order of feature importance. They also performed pre-identification by
Domain Name Server (DNS) requests to known STUN and domain-fronting servers.
Their artifact, “F-ACCUMUL”, and data set are not publicly available.

Wang et al. [35] use statistical properties of the traffic pattern of handshakes to
perform fingerprinting of DTLS traffic in Snowflake. This is a different approach
than field features in the handshake as seen in previous research. Their two main
features of importance, with a clear margin, are total time between packets and
packet length mean. A Docker image of their setup is available in dockerhub as
xinbigworld/ubuntu:1.28

Xie et al. [36] also detected Snowflake using statistical properties of the traffic
7https://github.com/kyle-macmillan/snowflake_fingerprintability
8https : / / hub.docker.com / layers / xinbigworld / ubuntu / 1.2 / images / sha256 -

3213fded0606c0e59b4b31845910a020d2a340c9dc4e810c2e7381ed02d3b22e

https://github.com/kyle-macmillan/snowflake_fingerprintability
https://hub.docker.com/layers/xinbigworld/ubuntu/1.2/images/sha256-3213fded0606c0e59b4b31845910a020d2a340c9dc4e810c2e7381ed02d3b22e
https://hub.docker.com/layers/xinbigworld/ubuntu/1.2/images/sha256-3213fded0606c0e59b4b31845910a020d2a340c9dc4e810c2e7381ed02d3b22e


2.2. STATE OF THE ART 19

patterns, but of HTTPS during the rendezvous phase. With this approach they
were able to block Snowflake traffic before being assigned an ephemeral proxy. They
trained a decision tree model using packet sizes, direction, time and network speed
feaures with a data set they created. Their code is available publicly at GitHub9,
and their data set is hosted on Baidu Netdisk10.

Holland et al. [37] in “New Directions in Automated Traffic Analysis” use au-
tomated machine learning to do general traffic analysis tasks. One of their use
cases was applying their tool to identify DTLS applications with the data set from
MacMillan et al. They claim that nPrintML can almost perfectly identify the browser
and application pair that generated the handshake, without the need of manual
feature engineering. Figure 2.4 shows a heatmap of automatic detected features, with
total length being the most important. Their tool is publicly available on GitHub11.

Figure 2.4: Per-bit feature importance for identification of browser and application
pair from MacMillan et al. data set, from Holland et al. [37]

9https://github.com/Xanole/SnowDT
10https://pan.baidu.com
11https://github.com/nprint/nprintml

https://github.com/Xanole/SnowDT
https://pan.baidu.com
https://github.com/nprint/nprintml
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2.2.2 Fingerprinting TLS

Although Snowflake uses DTLS and not TLS, the protocols are so similar that it is
worth exploring the realm of TLS fingerprinting, and existing mitigation techniques.

Sergey Frolov and Eric Wustrow developed the fingerprint-resitant uTLS li-
brary [15]. As part of the process they collected and analyzed TLS traffic to create
fingerprints. They extracted fields from the ClientHello and ServerHello messages,
combing and hashing them to create an unique fingerprint. In addition to the hashes,
they used the Levenshtein distance between the extracted fields to group fingerprints.
Their library employs multiple techinques for obfuscating traffic: low-level access to
the handshake, randomized ClientHello fingerprint, mimicking ClientHello messages
of other implementations and use of multiple fingerprints.

In the Master thesis of Erwin Janssen [38], different TLS implementations were
fingerprinted using model learning. Janssen employed a three-step process: build,
learn, and identify. In the build step, different DTLS implementations were compiled,
packaged and published in an automated pipeline. The learn step used LearnLib12

to infer state machines that describe the behavior of the built DTLS implementations.
The identify step applies these learned models to match fingerprints as a state
identification problem. While the model learning approach could distinguish between
different TLS implementations, the number of unique models produced was relatively
small, leading to overlaps where different implementations exhibited similar behavior.
Janssen suggests that expanding the learning alphabet, to include more message
types and variations, incorporating invalid message and employing various fuzzing
techniques could improve the uniqueness of the models. All of Janssen’s source code
is publicly available on GitHub under the tlsprint13 organization.

12https://github.com/LearnLib/learnlib
13https://github.com/tlsprint

https://github.com/LearnLib/learnlib
https://github.com/tlsprint


Chapter3Method

This chapter outlines the overall methodology of the thesis. Some assumptions are
established, along with defining what is in scope. We then explain the artifacts to be
developed, how they should be validated and discuss different approaches.

3.1 Methodology

Figure 3.1: The design cycle for this thesis. Color-coding shows how A1 and A2.1
are used in later validation steps.

21
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We adopt the design science methodology [39], which is a structured approach in the
form of the design cycle, to research information systems and software engineering.
The design cycle begins with the problem investigation, where we analyze and
understand the problem, including its context and underlying issues. This is followed
by treatment design, where potential software solutions, called artifacts, are developed
based on the insights gained from the investigation. Finally, treatment validation
involves testing and investigating the effect of the artifact prototype in a model of
the problem context to ensure it effectively addresses the problem. These tasks form
a cycle, because we iterate back to the problem investigation, starting the process
again, with new knowledge gained from the previous treatment design and validation.

Figure 3.1 shows the design cycle for this thesis, outlining the main cycles and
how they interconnect. The inital problem investigation was done in the previous
two chapters, where we looked at problems (motivation and ethics) and context
(communities and background). To answer the research questions for this thesis, we
design and validate three artifacts:

A1: DTLS fingerprint discovery tool
The aim of this artifact is to simulate a censor discovering
distinguishing DTLS fingerprints of Snowflake. Validation is
done by using the tool to find fingerprints in the MacMillan et
al. [13] data set. The results from this cycle will answer RQ1.

A2.1: DTLS handshake generation setup
This artifact will automatically generate fresh DTLS handshakes,
to be used for mimicking DTLS connections and as a data set for
further research. Validation includes comparing the handshakes
to manually generating handshakes, testing for consistency and
using A1 to compare the automatically generated handshakes
against the MacMillan et al. data set. This artifact will be
combined with A2.2 to answer RQ2.

A2.2: Fingerprint-resistant DTLS library
The final artifact is a Go module that extends the Pion DTLS
library to offer fingerprint resistance features (inspired by uTLS),
and aims to answer RQ2. It will use the fingerprints generated
by A2.1 for mimicking purposes. A1 will be used to validate
that the library does not produce any distinguishable fingerprints,
comparing it to a baseline of fresh Snowflake traffic.
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To benefit other researchers working on the area, ensure reproducibility and
scientific transparency, we will release all software artifacts built in this thesis
publicly under open-source licenses. However, some of the manual packet captures
are withheld to make sure there are no privacy compromises.

3.2 Scope and assumptions

We use this section to further scope and define the context.

3.2.1 Validation vs. evaluation

In this thesis, we will only do validation. The goal is to predict how artifacts will
interact with our context, simulated in a constructed environment. Evaluation, on
the other hand, is to deploy the artifacts in a real-world context, with real users,
running over time. In our case, this would require deploying the fingerprint-resistant
library with Snowflake in a real-world censored area and do empirical analysis of
deployment. We consider such an attempt to be beyond our scope, as it requires a
careful planning (protecting privacy of users, infrastructure) to yield proper results
and would be a whole thesis on its own.

The aim of this thesis is not to validate how cost-effective discovered fingerprints
are, only that fingerprints exist. Therefore using the tool (A1) to do fingerprint
matching and setting up an environment to block real-time traffic as a censor also
falls outside the scope. We assume that the simple regex fingerprints it produces
will be the most efficient and preferred way for a censor to do blocking. However,
demonstrating and evaluating it is not a goal.

3.2.2 Fingerprinting scope

For fingerprinting, we consider only the DTLS handshake to be in scope, not the
encrypted record layer. We will also not explore traffic pattern (flow) analysis (e.g.
timings, packet size, speed) such as Wang et al. [40] and Xie et al. [36] (we suspect
they did not use field features as they analyzed HTTPS which already used uTLS).
Even though they claim promising results, we believe it is difficult to know if the
statistical properties are of the DTLS implementation or the network itself. Such
approaches require highly-controlled environments to not fingerprint the underlying
network. Bocovich et al. [11] also warn against this, as traffic analysis attacks have
historically been overestimated due to un-realistic base rates [41].

3.2.3 Censor’s capabilities

Tschantz et al. [3] did a study in 2016 to ground the evaluation of circumvention
approaches in empirical observations of real censors. They found that censors
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prefer simple cost-effective solutions, with mostly passive monitoring (e.g. DPI) and
some active probing. They suggest that censorship circumventors should concern
themselves more with low-cost exploits. We assume that a censor will prefer simple,
stateless and deterministic solutions to perform detection and blocking. This will
effect how we design our artifacts, and we will focus on removing low-hanging fruits
before considering more advanced attacks.

We further assume that a censor prefers passive fingerprinting over active probing.
The Great Firewall of China have been deploying active probing for Shadowsocks [42,
43] and obfs3 [44]. This is probably due to it not being possible to perform passive
field based fingerprinting, because of the randomized nature of the protocols. Active
fingerprints are hard to discover, because you have to find a bug or side-channel of the
protocol. A censor would also have to deploy infrastructure to send the fingerprint
payloads. There have not been any active attacks on Snowflake, as far as we know.

3.3 Exploratory work

This section presents different design approaches that we explored, but did not
implement, for each of the artifacts described in Section 3.1. These are represented
by the dotted paths in Figure 3.1. We link the approaches to our scope, assumptions
and the feasibility of implementing them.

3.3.1 Fingerprinting tool

Active fingerprinting

Janssen [38] and Rasoamanana et al. [45] have both shown that state machine
inference (model learning) can be used to fingerprint TLS implementations. We
could imagine a censor running an active model learning algorithm like Angluin’s
L* [46] offline against various DTLS implementations. Using the inferred state
machines from the learning, a censor could isolate the differentiating state as a probe.
Fitera et al. [47] used protocol state fuzzing and state machine learning for finding
security vulnerabilities in various DTLS implementations (and open-sourcing their
tool, dtls-fuzzer1). Interestingly, they found that from pion/dtls they could infer a
state machine model of 66 states, the most of any of the other implementations. This
suggests that there might be possibilities of finding a probable state and develop
it as an active fingerprint if they are available. Even though this approach is very
promising, we chose not continue to explore it as we assume a censor would prefer
passive fingerprints. We prioritized our work towards exploring cheaper attacks and
mitigating them.

1https://github.com/assist-project/dtls-fuzzer

https://github.com/assist-project/dtls-fuzzer
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3.3.2 Handshake generation

Capturing real traffic

The most obvious way of making a data set of DTLS traffic would be to capture real-
world traffic, perhaps on the campus network. However, there are major drawbacks
to this approach. It is first and foremost a complex undertaking to do in a privacy
preserving manner [41]. Secondly, captured traffic will at some point become stale.
A collected data set is only valid for mimicking purposes shortly after the period it is
captured. Capturing real traffic will offer more diversity, but implementations change
and we need fresh handshakes. The trade-off is between accuracy (real handshakes)
and being future-proof (synthetically generated handshake). We decided to not
perform captures of real-world traffic.

3.3.3 DTLS library

Tunneling in browsers

Snowflake uses protocol tunneling, that is, using WebRTC as intended. To hinder
fingerprinting, we could use a browser implementation of the WebRTC and DTLS
stack, and it would be implementation-dependent tunneling. This approach is tempt-
ing as Snowflake would produce a real browser fingerprint, an idea discussed by the
anti-censorship team 2. There are two ways one could use a browser implementation,
the first is using the Tor browser itself, the second is by bringing your own browser
(BYOB).

There are two main challenges with using the Tor browser approach. The most
prominent is the lack of support of for WebRTC. It used to have it disabled, since
UDP was not supported by Tor3. The browser dev team is working on it, but the
issues for WebRTC bugs are still open on GitLab4. With our own testing, we did not
find WebRTC to be working. Even if Tor’s WebRTC implementation would work,
experience with the meek pluggable transport5 has shown that this approach requires
constant maintenance. Even though the browser-team aims to rebase to the lastest
versions of Firefox ESR quickly, their Tor browser patches might break, take time to
fix and be behind the Firefox user-base.

With BYOB, Snowflake would look for a browser on your system and use that for
WebRTC. We believe this is implementable, but would require a very high amount
of work and maintenance. To migrate to such an approach, Snowflake looses the

2https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/
40014#note_2823772

3https://gitlab.torproject.org/tpo/applications/tor-browser/-/issues/41021
4https://gitlab.torproject.org/tpo/applications/tor-browser/-/issues/41486#note_2886170
5Issue #13442, #15512, #18927, #22515, https://gitlab.torproject.org/tpo/anti-censorship/

pluggable-transports/meek/-/issues/

https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/40014#note_2823772
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/40014#note_2823772
https://gitlab.torproject.org/tpo/applications/tor-browser/-/issues/41021
https://gitlab.torproject.org/tpo/applications/tor-browser/-/issues/41486#note_2886170
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/meek/-/issues/
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/meek/-/issues/
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cross-platform benefits of running pure Go. The team would have to support different
ways of hooking into the WebRTC libraries of browsers on desktop, Android and iOS
separately.



Chapter4DTLS fingerprint discovery

In this chapter the first artifact (A1) for this thesis is described. The artifact is
a setup for simulating a censor discovering fingerprints of DTLS traffic to identify
Snowflake usage.

4.1 Architecture and implementation

To address RQ1, we want to analyze captured DTLS traffic of different implementa-
tions and find fingerprints. We recreated a setup similar to the one presented in the
work of Frolov and Wustrow [15]. Their tool was not released, and even if it had been,
adaptation from TLS to DTLS would have been necessary. We developed a tool called
dfind1, a Go program designed to discover passive fingerprints by identifying fields
specific to different DTLS implementations. These fingerprints could be represented
as a regular expression pattern and used to block Snowflake in real-time with DPI.

Figure 4.1 provides an overview of the fingerprinting setup we have implemented.
Captured DTLS traffic is read from pcap files, handshakes are parsed and relevant
features (fields) are extracted. The traffic is from known implementations and the
extracted features are stored in a database along with a type tag indicating the
specific implementation. Finally, the database is queried to find unique fields that
form a fingerprint, and fuzzy matching techniques are used to find extensions to
manually analyze for fingerprints.

To parse the pcap files we explored a few options. Fifield et al. wrote a bro/zeek
script2 to parse captured traffic and output a fingerprint for research on “Finger-
printability of WebRTC” [33]. The initial exploration of the 8-year-old script was not
successful, as the script was written for bro and would have to be migrated to the
newer version of the system called zeek. Doing this migration introduced too much
overhead for using this approach. tshark, the command line version of Wireshark,

1https://github.com/theodorsm/dfind
2https://github.com/miagilepner/dtls-fingerprint
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Figure 4.1: dfind architecture overview

has a DTLS dissector. Unfortunately, its JSON-formatted output is not mature yet.
When we exported DTLS traffic as JSON, lists were not parsed correctly and the
ciphersuites entry only contained a single cipher of 8 in total. There is an active
issue on the project’s GitLab with various related JSON-problems3. For a dissector
written in Go, we could use the Pion DTLS library, but we do not want to use a
library that we are testing with the tool itself.

We chose to use the gopacket/gopacket4 library to read pcap files and wrote a
simple DTLS handshake dissector, which was helpful to better understand the DTLS
protocol structure. Table 4.1 shows the fields supported by our dissector.

For the DTLS handshake messages, only the ClientHello and ServerHello are
parsed. These messages are also the most commonly used in state-of-the-art research.
The fields in the Hello messages are most relevant for fingerprints, as the messages
contain lists or extensions. Both lists and extensions can be of any order or length,
and is implementation specific depending on what features are supported.

In dfind, parsed fields and its corresponding implementation type is stored as a
fingerprint table in a PostgreSQL database. To discover fingerprints, the database is
queried as part of an automatic analysis step with two routines. One routine finds
unique values of fields which are identifying for a certain implementation type, the
other finds similar hex-strings in the extensions of each type, so that they can be
further manually analyzed. The SQL-queries used in the routines can be found in
Appendix B.

The unique field routine consists of two SQL-queries and is described in Algo-
rithm 4.1. This routine is used with every field marked in the ‘Analysis’ column in
Table 4.1. It is worth noting that only the complete list extensions as a hex-string is
considered during analysis, not individual extensions.

3https://gitlab.com/wireshark/wireshark/-/issues/17125
4https://github.com/gopacket/gopacket

https://gitlab.com/wireshark/wireshark/-/issues/17125
https://github.com/gopacket/gopacket
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Fields ClientHello ServerHello Analysis
Handshake type ✓ ✓

Length ✓ ✓ ✓

Fragment offset ✓ ✓

Major version ✓ ✓

Minor version ✓ ✓

Cookie length ✓ ✓ ✓

Cipher length ✓ ✓

Ciphers ✓ ✓

Chosen cipher ✓ ✓

Extension length ✓ ✓ ✓

Extensions ✓ ✓ ✓

Table 4.1: Fields parsed by the dissector. The ClientHello and ServerHello columns
indicate if the field is present in that message. The analysis column shows which
fields are used in an automatic analysis

Algorithm 4.1 Finding unique values of given field and type of implementation

We let t denote the type to find the fingerprint of, for example: snowflake. f is a
field to be checked for uniqueness, for example: ciphers.

1. Initialize the array of identifiers I ← ∅

2. Set array V ← all values of f where type = t ▷ SQL query 1

3. for each v ∈ V do

(a) Set array T ← types where f = v ▷ SQL query 2

(b) if T only contains t, then I ← I ∪ v

end for

4. Return I
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To analyze the similarity of extensions encoded in hex-strings, we used the built-in
fuzzy string matching of PostgreSQL5. Most of the supported methods of string
proximity are based on phonetics and are not useful when we are analyzing similarity
of hex-strings. Levenshtein is a much used edit distance for determining how dissimilar
two strings are by insertions, deletions or substitutions [48]. Two strings with a
Levenshtein distance of 0 are identical, and a higher number corresponds to how
dissimilar the strings are.

Algorithm 4.2 shows the steps for analyzing and finding fingerprints in extensions.
Steps 1 -2 are done as an automatic analysis routine, while step 3 is done manually.
Step 3 consisted of opening every highlighted pair in Wireshark and looking for
differences between them. A regular expression was created for the difference, and
tested on the rest of the data set. If the regular expression was only found for
Snowflake traffic, then we had found a fingerprint.

Algorithm 4.2 Analyzing extensions by fuzzy string matching

We let t denote the type to find the fingerprint of, for example: snowflake.

1. Set array E ← all extensions where type = t ▷ SQL query 3

2. for each e ∈ E do

(a) Set array S ← all extensions with Levenshtein(extension, e)
between 1 and 32 ▷ SQL query 4

(b) for each s ∈ S, insert (s, e) in the database. ▷ SQL query 5

end for

3. for each extension pair in the database, manually compare them in Wireshark.

The Damerau–Levenshtein distance (which is not supported by PostgreSQL)
also considers transpositions of single characters. Implementing more advanced edit
distances like Damerau-Levenshtein and groupings with locality-sensitive hashing are
out of scope for this thesis, and we only utilized the built-in Levenshtein distance.

5https://www.postgresql.org/docs/current/fuzzystrmatch.html

https://www.postgresql.org/docs/current/fuzzystrmatch.html
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4.2 Results and discussion

To validate the dfind artifact, we used the data set from MacMillan et al. [13].
The data set consists of 6555 DTLS handshakes from WebRTC traffic of Snowflake,
Facebook Messenger, Google Hangouts and Discord running on Firefox and Chrome.

Table 4.2 shows how many ClientHellos and ServerHellos were parsed by our
tool. We can see that there are more re-transmissions of ClientHellos for Snowflake,
than for the other implementations.

Type # handshakes # parsed CH # parsed SH
Snowflake 991 4366 990
Discord 1989 3119 1987
Google 1995 1657 1246
Facebook 1580 1674 1866

Table 4.2: Number of parsed handshakes from Macmillan et al. data set

Table 4.3 contains identifying values of fields found in the automatic analysis
routine for Snowflake. The fields are sorted by occurrence (how many handshakes
included the fingerprint), from most common on the first row, to the least common
on the last. None of the identifying values presented in Table 4.3 are discussed in
Macmillan et al., thus all of them are new fingerprints from the data set.

44% of Snowflake handshakes had a message with an identifying length. This
corresponds well with the most important features found by Wang et al. [35] and
Holland et al. [37]. The high number of unique extensions combined with the varying
list of ciphers can be theorized to be what causes the total length to be the most
identifying.

Unique extensions was the most common fingerprint for a DTLS handshake, with
63% of handshakes having a unique value for the entire extensions field. We conclude
that extensions have a high potential for being used as fingerprints. The reason for
this, is that extensions is not a fixed size field, it can be in any order, of varying
length or contain many different extensions. To pinpoint more closely what the
implementation difference is, we analyzed the extensions using the fuzzy matching
routine.

The automatic analysis gave us 13 pairs of extensions to further look into manually.
Table 4.4 shows the results from this manual work. It is worth noting that the regular
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expression fingerprint is for DPI of the extension header field, not the entire handshake
message bytes.

Fields Value Occurrence
Extensions 41 extensions, see Appendix A.1 63%
Length 67, 99, 103, 119, 123, 134, 150, 154,

156, 160, 174, 176, 180, 223, 269 44%
Extensions Length 27, 49, 68, 98, 102, 161, 187 20%
Ciphers c02bc02fcca9cca8c00ac009c014,

c02bc02fc00ac014,
c02bc02fc00ac014c0acc0ae,
13011303c02bc02fcca9cca8c00ac009c013c014,
cca9cca8c02bc02fc009c013c00ac014009c002f0035000a 19%

Cipher length 8, 12, 14, 20 16%

Table 4.3: Identifying fields found during automatic analysis that can be used for
fingerprinting Snowflake

Extension Message Fingerprint Occurrence
a) use_srtp CH *000e0009000600010008000700* 1%
b) use_srtp SH 000e* 2%
c) renegotiation_info SH *ff01000100* missing 100%
d) supported_groups SH *000a* 99%

Table 4.4: Extensions that can be used for fingerprinting Snowflake

Fingerprint a) in Table 4.4 was still found in freshly captured snowflake traf-
fic, running the Snowflake web browser extension6. The fingerprint was found in
Snowflake captures from ValdikSS in 20217, and was not found in the non-snowflake
capture8 from the same time. The fingerprint was also found by joining a voice
channel in Discord on Chromium 9. This suggests that the fingerprint is not valid
anymore, without collateral blocking. use_srtp is not discussed in MacMillan et
al. [13]

Fingerprint b) in Table 4.4 is a new fingerprint that has not been discussed in
Macmillan et al., or seen any real world usage. The use_srtp extension is required

6version 0.7.3 in Chromium (122.0.6261.39 Official Build Arch Linux 64-bit), go version 1.22.0,
Kernel 6.7.5-arch1-1

7https://ntc.party/t/ooni-reports-of-tor-blocking-in-certain-isps-since-2021-12-01/1477/19
8https://ntc.party/t/ooni-reports-of-tor-blocking-in-certain-isps-since-2021-12-01/1477/24
9version Chromium (122.0.6261.39 Official Build Arch Linux 64-bit), kernel 6.7.5-arch1-1

https://ntc.party/t/ooni-reports-of-tor-blocking-in-certain-isps-since-2021-12-01/1477/19
https://ntc.party/t/ooni-reports-of-tor-blocking-in-certain-isps-since-2021-12-01/1477/24
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for WebRTC, but this fingerprint is having it as the first extension in the list of
extensions in the ServerHello. We were not able to find this fingerprint in fresh
captures of Snowflake, so it is uncertain if it can still be used to identify Snowflake.

Fingerprint c) in Table 4.4 is not offering the renegotiation_info extension
in the ServerHello. This fingerprint was also found by Macmillan et al. Fresh
Snowflake traffic did not contain this fingerprint, as the Pion library always adds
renegotiation_info to the ServerHello since February 202110.

Fingerprint d) in Table 4.4 was also found by Macmillan et at. and they rec-
ommended not to use this optional extension in the ServerHello. This fingerprint
has also been used in the real world by Russia in 2022 11. On another occasion,
Russia also blocked traffic containing specific bytes at a offset that corresponds to
the list of supported_groups in ClientHellos [12]. Both of these fingerprints based
on supported_groups have been fixed. This fingerprint did also occur once for
Facebook traffic, thus it did not show up as a unique extension in the automatic
analysis of fields.

Having found both new and known fingerprints, validates the capabilities of the
dfind artifact. This also shows how we are able to find cheap regular expression
fingerprints of fields, without the need for applying machine learning. As far as we
know, censors have not deployed machine learning to block Snowflake, only DPI
regex patterns.

4.3 Further work

We prioritized fuzzy matching and manual analysis of extensions. To further automate
this routine, we could parse each extension as its own field. Then we could use the
same routine as for the regular fields, trying to find unique values. If we parse each
extension defined by the Internet Assigned Numbers Authority12, we could also check
for custom extensions that are not defined in the specification.

A short-coming of our tool, is that it does not parse and reassemble fragmented
messages. However, there were only 11 fragmented messages in the data set of 991
Snowflake handshakes.

The cookie field in DTLS consists of a time (GMT) and pseudo-random bytes. It
might be the case that one could find cryptographic differences in the implementation
of the pseudo-randomness.

10https://github.com/pion/dtls/commit/d18b8c0d2dc829d684fd08cfd56773436ffcd51f
11https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/

40014#note_2765074
12https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml

https://github.com/pion/dtls/commit/d18b8c0d2dc829d684fd08cfd56773436ffcd51f
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/40014#note_2765074
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/40014#note_2765074
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml
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We only analyze the hello messages, further work should also consider other
messages (as they are mostly not analyzed in state of the art yet). We believe the
Certificate Request message might be a good candidate to find identifiers. It contains
the signature hash algorithm field, that can be in any order and be specific to what
the implementation supports.

The authors of nPrintML claim that it can successfully find fingerprint features
and perform identification in a fully automated fashion [37]. We do have a heatmap
of their feaures (see Figure 2.4), but is hard to read the features as they cut off the
DTLS payload. It would be interesting to compare our specific and deterministic
approach to a more general machine learning tool.



Chapter5DTLS handshake generation

This chapter describes a continuous deployment (CD) setup with GitHub Actions
workflows for generating fresh DTLS-WebRTC handshakes with the most recent
version of common browsers. The purpose of this setup is two-fold. Firstly, a pipeline
to keep the mimicking functionality up-to-date with popular browsers (that usually
silently update “themselves”). Secondly, a public corpus of DTLS handshakes that
will grow over time. A censor would have access and the ability to do large scale
collection of DTLS traffic, so a publicly available data set is valuable for researchers
to keep up.

The much used public DTLS traffic data set by MacMillan et al. from Princeton
is over 4 years old. In such a time, the implementations for the browsers included
in the data set have undergone changes and users updated to newer versions. We
therefore form the hypothesis: “current browser versions have different fingerprints
than what is available in publicly available data sets”. This was demonstrated in
the previous chapter were previously discovered fingerprints in the data set cannot
be reproduced by updated browsers. Stale handshakes are not useful for mimicking
purposes, as they are not representative of today’s traffic. We explored the Docker
image of Wang et al. [35], and did not find any DTLS handshakes captures. Xie et
al. [36] did provide a GitHub repository with their artifacts. However, they only gave
a link to pan.baidu.com for their data set, which requires a registered user with a
chinese phone number. With one stale data set, and another we could not obtain,
we saw the need to create a setup for collecting new DTLS handshakes.

uTLS relies on volunteers to produce fingerprints to mimic. They collect fin-
gerprints from users visiting their website1, which can be used for auto-generating
mimicking configurations. We had trouble using their service, as it has been slow,
or even unreachable (timeouts) at times. Albeit a highly realistic way of collecting
fingerprints, there have been concerns from the anti-censorship team that the fin-

1https://tlsfingerprint.io/
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gerprints are not up to date2. The maintainers and contributors are slow to add
new fingerprints to the library code. In the time of writing, the latest versions of
browsers supported by uTLS for mimicking are: Chrome 120, Firefox 120 and Safari
16.0. These versions were released in December 2023, November 2023 and September
2022 respectively. Our novel CD approach does not need human interaction and
should keep itself up to date to the latest versions without maintenance.

5.1 Overview and tools

To automate browser interactions, we considered two popular open-source tools:
Selenium3 and Playwright4. Selenium, the older of the two, scripts browsers natively
using webdrivers5, which is a W3C standard. This ensures that we use the same
browser binaries as an actual user, unlike Playwright, which ships with its own
binaries. Thus, Selenium is preferred for our workflow.

We needed to decide which WebRTC application to use in the workflow. While real-
world applications like Discord, Slack, or Jitsi generate realistic traffic patterns, they
are quite resource-intensive. For instance, Jitsi, an open-source video conferencing
project, requires four Docker containers to run. We captured handshakes from
these applications using the same Chromium version6, which resulted in identical
ClientHello fingerprints. This indicates that different WebRTC applications produce
mostly the same fingerprint with the same browser version. Multiple synthetic
WebRTC applications were also explored. By synthetic, we mean applications that
are not meant to be used by users in a production environment, but only for testing.

One such synthetic application is ‘wpt’ (web-platform-tests), a project to create
“Test suites for Web platform specs”. This test suite supports most W3C standards
and contains a large test suite for WebRTC. The project has seen wide adoption, with
Chromium using it to conduct interoperability testing between browsers7. However,
the source code of ‘wpt’ is 1.1GiB, containing a lot of functionality and tests for
other web specifications we do not need for our workflow. Looking for an even more
minimal application, we found webrtc/samples8, a repository containing sample
applications written by the WebRTC project. Although ‘wpt’ is closer to what can
be considered an industry standard for testing different WebRTC implementations,
both synthetic applications produced the same fingerprint as the real applications

2http://meetbot.debian.net/tor-meeting/2022/tor-meeting.2022-02-17-15.59.log.html#l-96
3https://www.selenium.dev/
4https://playwright.dev/
5https://www.w3.org/TR/webdriver1/
6Version 122.0.6261.94 (Official Build) Arch Linux (64-bit)
7https : / / chromium.googlesource.com / chromium / src / + / HEAD / docs / testing /

web_platform_tests.md
8https://github.com/webrtc/samples

http://meetbot.debian.net/tor-meeting/2022/tor-meeting.2022-02-17-15.59.log.html#l-96
https://www.selenium.dev/
https://playwright.dev/
https://www.w3.org/TR/webdriver1/
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/testing/web_platform_tests.md
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/testing/web_platform_tests.md
https://github.com/webrtc/samples
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mentioned above. webrtc/samples also contains a GitHub workflow for testing
the establishment of a mediastream channel between two browsers using Selenium.
We selected this workflow as the starting point for our fingerprint generation, as it
contains a script for our preferred browser automation tool and produced the same
handshakes as the more commonly used applications.

As Snowflake uses data-channels and not mediastreams, we checked if there
was a difference in the handshakes for the different channels. Mediastreams use
SRTP to deliver audio and video over UDP, while data-channels do not. However,
while analyzing up-to-date captures we see that both channels add the use_srtp
extension in the handshake. This happens because WebRTC does not want to redo
the DTLS handshake if the other type of channel is required in a offer later on. Thus,
handshakes are ambiguous to which type of channel is used, which is ideal for our
purposes.

5.2 Implementation

The workflow (see Appendix C) runs ubuntu-latest on a GitHub-hosted runner and
is split into two main jobs. The first job, named ‘handshake-capture’, is for generating
fresh DTLS handshakes of browsers and uploads them as GitHub artifacts. The
second job, called ‘commit-fingerprints’, adds the pcap artifacts to the repository and
parses them into a Go file. Figure 5.1 shows an overview of the workflow architecture
and its steps. To keep fingerprints fresh, the workflow runs as a cron job once a day.

Since the ‘handshake-capture’ job shall be used for both Firefox and Chrome, we
utilize a matrix for the job. We define the browser as a variable, and the matrix
allows us to create multiple jobs from one definition. For each variable, a job is
created and all the matrix jobs runs in parallel. This matrix can potentially be
expanded to add other browsers in the future.

The ‘handshake-capture’ job starts with a series of setup steps. It checks-out
the latest branch of the repository, installs tshark and Node.js9. After the setup,
the latest version of Chrome or Firefox is downloaded using @puppeteer/browsers.
This is the recommended way of getting browser binaries according to the Chrome
developers10. Next, a packet capture starts on the loopback interface with tshark.
While the capture is running, the WebRTC application is scripted using Selenium.
After the application has successfully established a mediastream, the tshark capture
is stopped. Since all traffic is captured on the loopback interface, we filter the capture
only for DTLS handshake traffic using tshark filters. The last step in the job is to
upload the filtered pcap as a GitHub artifact.

9https://nodejs.org/en
10https://developer.chrome.com/blog/chrome-for-testing/

https://nodejs.org/en
https://developer.chrome.com/blog/chrome-for-testing/
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Figure 5.1: Overview of the workflow architecture
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When both of the previous matrix jobs have been completed without failure, the
‘commit-fingerprints‘ job is triggered. First, all pcap artifacts are downloaded from
both ‘handshake-capture’ jobs. A checkout of the main repository is performed and
a Go environment is set up. The handshake captures from both Firefox and Chrome
are parsed by a Go script that extracts the ClientHello fingerprint and adds it as
a hex-string to fingerprints.go (see Appendix D). This file can be imported and
used for mimicking later. Since we have generated code in fingerprints.go, we
run gofmt11 and a linter to make sure that the code is formatted and its syntax
correct. If we generate a fingerprint of a browser version not present in the repository
already, both the hex-string fingerprint and the handshake pcap are committed to
the repository.

5.3 Results and discussion

To make sure that the workflow creates the same fingerprints consistently, we ran
the workflow every 30 minutes for 12 hours. This generated handshake messages of
Chrome version 124_0_6367_91 and Firefox version 125_0_2. In the 145 recorded
handshakes (containing 87 CH and 58 SH), all the fingerprints were exactly the same.
This validates that the fingerprint generation tool is consistent, and suggests that
there is little variation in the handshake a specific browser version will generate.

We also analyzed the generated traffic using dfind and the data set from MacMillan
et al. No identifiers were found for the Firefox traffic. This suggests that the fingerprint
generation tool generates realistic traffic, and that the Firefox implementation has not
changed significantly or noticeably. During manual analysis we also found that Firefox
adds the record_size_limit extension in the ClientHello. This extension is not
supported by Pion now, and is a certain way of differentiating DTLS implementations
by use of whitelist. For Chrome traffic, multiple identifiers were found (see Table 5.1).
The results show that the recent Chrome implementation has changed the order
of supported ciphers and the order for the SRTP protection profiles, compared to
the browser versions used by MacMillan et al. We created this workflow because we
suspected that such changes are present in newer versions of browsers, and confirms
our hypothesis. Manually capturing traffic on Chromium12 with Discord resulted
in the same handshake as the generation tool. Demonstrating that the workflow
generates the same traffic as a user interacting with a real application using an
updated browser.

11https://pkg.go.dev/cmd/gofmt
12version 122.0.6261.39 Official Build Arch Linux 64-bit, kernel 6.7.5-arch1-1

https://pkg.go.dev/cmd/gofmt
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Fields Value
Length 132
Extensions Length 68
Extensions use_srtp: 00010008000700
Cipher length 22
Ciphers c02bc02fcca9cca8c009c013c00ac014009c002f0035

Table 5.1: Identifiers for generated Chrome handshake

5.4 Further work

We already capture the entire DTLS handshake, so exporting the hex-string fingerprint
of other messages than the ClientHello could be added in the workflow. This would
be useful for mimicking purposes.

For the setup to be more representative of the general internet users, it would be
relevant to run the fingerprint workflow on Windows and MacOS, which are both
supported by GitHub-hosted runners13. Using MacOS we could test Safari/Webkit
natively, which we cannot do with the current setup. Having a setup with virtual
mobile phones running iOS and Android would also be important, as this is how
many people access the internet today. We did a quick analysis of a single DTLS
handshake captured by using Jitsi with Fennec (v125.3.0) on Android and found
that it produced the exact same ClientHello as in the generated Firefox handshake.
This is not too surprising as Fennec is based on Firefox. We are not aware of any
available data sets for DTLS traffic produced by mobile devices.

13https://docs.github.com/en/actions/using-github-hosted- runners/about-github-hosted-
runners/about-github-hosted-runners#supported-runners-and-hardware-resources

https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners/about-github-hosted-runners#supported-runners-and-hardware-resources
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners/about-github-hosted-runners#supported-runners-and-hardware-resources
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In this chapter a fingerprint-resistant DTLS Go module (A2.2) that extends pion/dtls
with mimicked and randomized ClientHello features. The first section starts with
an examination of DTLS features supported by the pion/dtls library compared to
Firefox and Chromium. Then, we provide implementation details for our module,
and finish with a validation and analysis of the developed features.

6.1 Feature support

This section gives a short overview of the features supported or missing from the
Pion library.

pion/dtls aims at cohering to the DTLS1.2 specification only. It currently supports
8 ECDHE cipher suites, with chacha20poly1305 being planned. The library supports
the following extensions:

◦ ServerName

◦ SupportedEllipticCurves: P-256, P-384 and X25519

◦ SupportedPointFormats: Uncompressed

◦ SupportedSignatureAlgorithms1: SHA256ECDSA, SHA384ECDSA,
SHA512ECDSA, SHA256RSA, SHA284RSA, SHA512RSA and ED25519

◦ UseSRTP: AES128_CM_HMAC_SHA1_80, AES128_CM_HMAC_SHA1_32 ,
AEAD_AES_128_GCM and AEAD_AES_256_GCM

◦ ALPN

◦ UseExtendedMasterSecret

1Observed in various captures
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◦ ConnectionID

◦ RenegotiationInfo

We know from the discussion in Section 5.3 that Pion does not implement the
record_size_limit extension. Both the missing extension and chacha cipher can
be used to block the Pion library with an allowlist.

The Pion library exposes a PaddingLengthGenerator through the config API
which adds padding bytes to inflate ciphertext size, in order to obscure content
size from observers. This can most likely be used to counteract flow statistics
fingerprinting based on packet length, such as done by Wang et al. [35]. However,
Xue et al. suggests in their pre-publication paper on ‘Fingerprinting Obfuscated
Proxy Traffic with Encapsulated TLS Handshakes’ that multiplexing is a better
approach than padding [49].

Doing a manual analysis of the code of browsers, we found that only Firefox
partly supports DTLS 1.3 using their Network Security Services (NSS2) library,
while Chromium with the boringSSL3 library does not. Version 1.2 is the preferred
version used in Firefox and version 1.3 can only be enabled by actively changing the
media.peerconnection.dtls.version.min4 flag to 772 (DTLS 1.3). We also saw
from our generated handshakes in the previous chapter, that DTLS 1.2 was theonly
version available, confirming that its not yet deployed by browsers.

6.2 Implementation

Here we present the implementation of covertDTLS5, a Go module that extends
pion/dtls to provide mimicry and randomization features.

The initial pull request (PR) to the Pion DTLS library contained both the
fingerprint generation workflow (A2.1) from Chapter 5 and mimicking features
(while planning to add randomization as a separate PR later). Adding the features
to up-stream was done to minimize friction of deployment, as applications using the
Pion library could just update to the newest version to our features. Two of the Pion
maintainers, Daenney and Atsushi Watanabe, commented that keeping fingerprints
up to date with the workflow was too much of a maintenance cost, and beyond the
scope of implementing features from the RFC (the entire discussion can be found in
the PR6). A refactoring was therefore done, with the features being replaced with

2https://firefox-source-docs.mozilla.org/security/nss/index.html
3https://boringssl.googlesource.com/boringssl
4https://searchfox.org/mozilla-central/source/modules/libpref/init/all.js#347
5https://github.com/theodorsm/covert-dtls
6https://github.com/pion/dtls/pull/631

https://firefox-source-docs.mozilla.org/security/nss/index.html
https://boringssl.googlesource.com/boringssl
https://searchfox.org/mozilla-central/source/modules/libpref/init/all.js#347
https://github.com/theodorsm/covert-dtls
https://github.com/pion/dtls/pull/631
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general hooks in the configuration API that exposes handshake messages. Both the
workflow and the mimicking was moved to its own repository called covertDTLS7,
that uses the added hooks for manipulating handshakes. Randomization features
were added to the module later.

6.2.1 Handshake Hooks

The handshake hooks we added to pion/dtls are shown in Listing 6.1. The Config
struct is the exposed API for configuring a DTLS client or server. Each hook is
defined as a function that takes the hooked message type (e.g. MessageClientHello)
as the only parameter and returns a type that implements the general Message
interface (see Listing 6.2). The general Message interface is used for assembling
a message struct into raw bytes to be sent over the wire, and disassemble raw
bytes into a struct. We implemented hooks for the ClientHello, ServerHello and
CertificateRequest handshake messages, as they are the most likely messages to be
fingerprinted (as discussed in Chapter 4).

Listing 6.1: Message hooks added in the configuration API of pion/dtls
1 type Config struct {
2 // other configuration options...
3
4 ClientHelloMessageHook func(handshake.MessageClientHello) handshake.Message
5 ServerHelloMessageHook func(handshake.MessageServerHello) handshake.Message
6 CertificateRequestMessageHook func(handshake.MessageCertificateRequest) handshake.

↪→ Message
7 }

Listing 6.2: Message interface
1 // Message is the body of a Handshake datagram
2 type Message interface {
3 Marshal() ([]byte, error)
4 Unmarshal(data []byte) error
5 Type() Type
6 }

The pion library provides a handler for each handshake flight, consisting of a
parse function and a generate function. Listing 6.3 shows how we inject our hook
in the flight1Generate function. The handshake message is constructed from the
internal state and configuration (lines 6-14), and passed to a returning packet struct
(lines 25-34). If the hook is nil (Go’s zero value), the original constructed message is
passed on (line 22). If the hook is not nil, indicating that the hook has been set in
the configuration, then the constructed message is passed as input to the hook (line

7https://github.com/theodorsm/covert-dtls

https://github.com/theodorsm/covert-dtls
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20), and the returned message from the hook is passed to the packet struct. When
the Marshal method is called later to build the raw bytes, the function injected
by our hook will run. The ClientHelloMessageHook was injected in flight1 and
flight3, ServerHelloMessageHook in flight4 and flight4b (an optional flight for
ressuming a previous session), and CertificateRequestMessageHook was injected
in flight4.

Listing 6.3: Injected hook in the flight1Generate function of pion/dtls
1 // ...
2 // Setting state and applying configurations.
3 // ...
4
5 // Constructing the original ClientHello message
6 clientHello := &handshake.MessageClientHello{
7 Version: protocol.Version1_2,
8 SessionID: state.SessionID,
9 Cookie: state.cookie,

10 Random: state.localRandom,
11 CipherSuiteIDs: cipherSuiteIDs(cfg.localCipherSuites),
12 CompressionMethods: defaultCompressionMethods(),
13 Extensions: extensions,
14 }
15
16 var content handshake.Handshake
17
18 // Injecting hook
19 if cfg.clientHelloMessageHook != nil {
20 hs = handshake.Handshake{Message: cfg.clientHelloMessageHook(*clientHello)}
21 } else {
22 hs = handshake.Handshake{Message: clientHello}
23 }
24
25 return []*packet{
26 {
27 record: &recordlayer.RecordLayer{
28 Header: recordlayer.Header{
29 Version: protocol.Version1_2,
30 },
31 Content: &hs,
32 },
33 },
34 }, nil, nil

Pion requires test coverage of their codebase which is checked by a CI/CD
pipeline at PRs. We expanded their end-to-end (E2E) tests for the ClientHello
and ServerHello hooks, which only succeed if a entire handshake is completed. The
test for the ClientHelloMessageHook also checked if the cipher list were changed
successfully, while for the ServerHelloMessageHook we checked if we could inject
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an ALPN extension. As we could not verify if fields have been changed for the
CertificateRequest message, we wrote a unit test for flight4 to test the corresponding
hook. The test checked if we could remove all the signature hash algorithms.

After we added tests that covered our changes, the maintainers merged our
features into the master branch of pion/dtls8.

6.2.2 Mimicry

We refactored the workflow to be included in covertDTLS and the generated Clien-
tHellos are added to fingerprints.go (see an example in Appendix D) in their own
pkg/fingerprints package. To mimic (replay) these fingerprints, we developed the
pkg/mimicry package.

Rather than creating a Go struct for mimicked fingerprints like they do in uTLS,
we adopt a lower level approach, manipulating raw bytes. This reduces the chance of
accidentally changing a fingerprint when marshaled from a struct. Figure 6.1 show
how we only replace the bytes for the ClientRandom, SessionID and Cookie fields
when mimicking a message.

Figure 6.1: A mimicked ClientHello message, the highlighted bytes are replaced
with values from the hooked message.

Mimicking is provided by the MimickedClientHello struct, which implements
the Message interface and a hook method for MessageClientHello. When the

8https://github.com/pion/dtls/commit/8738ce19f77e598a194c2d1d87dc9d72e5c2e948

https://github.com/pion/dtls/commit/8738ce19f77e598a194c2d1d87dc9d72e5c2e948
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hook is triggered it will copy the original ClientRandom, SessionID and Cookie
values into its own fields and return itself as a Message. The Pion library calls the
Marshal function to assemble the message into bytes. MimickedClientHello will
decode a hex-string fingerprint from fingerprints.go into bytes and replaces the
ClientRandom, SessionID and Cookie with the stored original values. This will ensure
that the handshake will function correctly, but the rest of the message bytes are
exactly as the fingerprint.

Listing 6.4 shows an example of using MimickedClientHello. We provide a
LoadFingerprint method, so that a user of the module can select a specific finger-
print, or use their own hex-string fingerprint. Notice that we also have to specify
a list of SRTPProtectionProfiles at line 17, as our provided fingerprints are from
WebRTC traffic, requiring SRTP.

Listing 6.4: An example using a mimicked ClientHello message with covertDTLS
1 import (
2 "github.com/pion/dtls/v2"
3 "github.com/theodorsm/covert-dtls/pkg/fingerprints"
4 "github.com/theodorsm/covert-dtls/pkg/mimicry"
5 )
6
7 // Get a specific fingerprint
8 fingerprint := fingerprints.Mozilla_Firefox_125_0_1
9

10 clientHello := mimicry.MimickedClientHello{}
11
12 // If no specific fingerprint is loaded, the most recent one will be used
13 clientHello.LoadFingerprint(fingerprint)
14
15 cfg := &dtls.Config{
16 // SRTP needs to be enabled with fingerprints
17 SRTPProtectionProfiles: []dtls.SRTPProtectionProfile{dtls.

↪→ SRTP_AES128_CM_HMAC_SHA1_80, dtls.SRTP_AES128_CM_HMAC_SHA1_32, dtls.
↪→ SRTP_AEAD_AES_128_GCM, dtls.SRTP_AEAD_AES_256_GCM},

18 ClientHelloMessageHook: clientHello.Hook,
19 }
20
21 // Use config with connection...

6.2.3 Randomization

The last package in covertDTLS is pkg/randomize (see Listing 6.5 for an example
of usage), which implements a hook for randomization of an intercepted ClientHello
message.

The goal is to create so many different fingerprints that it is unfeasible to
maintain a blocklist for a censor. We focus mainly on randomizing fields consisting
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of lists, and introduce Algorithm 6.1 as the way of re-ordering such fields. The
ShuffleRandomLength algorithm will shuffle a list, or create a sub-set of the
original list with a shuffled order.

Algorithm 6.1 Randomize order and length of a list
Let S denote a non-empty set of elements to be randomized. rlength is a boolean
for deciding if the output set should be of random length.

ShuffleRandomLength(S,rlength)
1: Out← ∅
2: Tmp← S
3: if rlength = true then
4: n←R [1, len(Tmp)] ▷ pick random value in range
5: else if rlength = false then
6: n← len(Tmp)
7: end if
8: while len(Out) < n do
9: pick ←R Tmp ▷ pick random element in set

10: Out.append(pick)
11: Tmp.remove(pick)
12: end while
13: return Out

The algorithm was implemented using Go generics, so we could use the procedure
on any type of slice (Go’s array). We randomized the following fields: ciphers,
extensions, supported_groups, signature_algorithms, use_srtp and ALPN. The
extensions were only shuffled, while we randomized the length and order of the other
fields. ALPN might contain a list of protocols, but we only add one of 15 common
protocol ids (defined by IANA9). This is also the only extension that will be injected
if it is not already contained in the original message, but we provide a flag for
disabling this feature. We do otherwise not inject any values that are not in the
hooked message as to minimize the potential of announcing unsupported features.
This also makes the randomization application agnostic, as it will use the needed
features for a given application, not just WebRTC as the mimicked fingerprints do.

9https : / / www.iana.org / assignments / tls - extensiontype - values / tls - extensiontype -
values.xhtml#alpn-protocol-ids

https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids
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Listing 6.5: An example using a randomized ClientHello message with covertDTLS
1 import (
2 "github.com/pion/dtls/v2"
3 "github.com/theodorsm/covert-dtls/pkg/randomize"
4 )
5
6 randClientHello := randomize.RandomizedMessageClientHello{RandomALPN: true}
7
8 cfg := &dtls.Config{
9 ClientHelloMessageHook: randClientHello.Hook,

10 }
11
12 // Use config with connection...

6.3 Results and discussion

The preceding two subsections aim at validating and discussing the mimicry and
randomization features implemented in A2.2.

6.3.1 Mimicked ClientHello

To validate the mimicry capabilities of covertDTLS we integrated the module into a
forked version of Snowflake, and compared its fingerprint to fresh Snowflake traffic.
The version we forked (commit 22a94)10 used pion/webrtc version v3.2.29 and
pion/dtls version v2.2.7. The libraries were quite far behind the current master
branch, so we had to fork both of the old versions and manually backport our hooking
features. snowbox11 was used simulate a Snowflake environment, building a local
deployment consisting of a client, server, proxy and broker.

We analyzed traffic (using dfind) from the non-modified version of Snowflake
and our forked version with mimicking enabled, comparing both to the MacMillan
et al. data set, also adding our generated handshakes of recent browsers. Table 6.1
shows the identifying features found for fresh Snowflake traffic using snowbox. This
Snowflake fingerprint was not found in Chapter 4, indicating that the implementation
has changed. Running snowbox using covertDTLS and mimicking recent Firefox
and Chrome fingerprints gave no identifiers, showing that our module successfully
mimicked recent browsers. This validates the mimicking features provides fingerprint-
resistance using our fingerprint tool (A1).

10https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/tree/
22a945971d1580682f2fe6e2e8ca6585e451436f

11https://github.com/cohosh/snowbox

https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/tree/22a945971d1580682f2fe6e2e8ca6585e451436f
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/tree/22a945971d1580682f2fe6e2e8ca6585e451436f
https://github.com/cohosh/snowbox
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Fields Value
Length 64, 114
Extensions Length 60
Extensions Appendix A.2
Cipher length 12
Ciphers c02bc02fc00ac014c02cc030

Table 6.1: Identifiers for fresh Snowflake traffic from Snowbox

With the mimicked Firefox ClientHello, the unsupported extension
record_size_limit was added. Even though Pion does not explicitly support it,
the server echos the extension back in the ServerHello. We suspect that the server
adds the unsupported extension because of GREASE [50] support, a mechanism to
prevent extensibility failures.

The fingerprints we provide in pkg/fingerprints are only suitable in a WebRTC
scenario. However, we provide the LoadFingerprint method to make t possible for
any type of DTLS traffic to be mimicked using covertDTLS.

6.3.2 Randomized ClientHello

This section finds the theoretical amount of possible fingerprints we can generate
using our ShuffleRandomLength algorithm, before presenting the results of using
dfind (A1) to analyze the results of capturing 1000 handshakes using randomized
ClientHellos with covertDTLS. A discussion comparing the theoretical amount and
our empirical results is given.

We can consider finding all possible fingerprints as a distinguishable permutations
problem. The equation for the number of permutations where r elements are selected
from a set of n distinct elements is given by:

P (n, r) = n(n− 1)(n− 2) ... (n− r + 1) = n!
(n− r)! where n, r ∈ N (6.1)

We let Pα(n) be the number of permutations of a set with n elements using
Algorithm 6.1 with rlength = false. This shuffles a fixed length set, thus we can
use Equation 6.1 with r = n:

Pα(n) = P (n, n) = n!
(n− n)! = n!

(0)! = n! (6.2)
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Pβ(n) denotes the number of permutations of a set with n elements using Al-
gorithm 6.1 with rlength = true. There will be a set of r-permutations for each
length r ∈ [1, n]. Each of theses sets will be independent of each other. This leads us
to the following equation for the total amount of permutations with shuffling and
randomizing length:

Pβ(n) =
n∑

r=1
P (n, r) (6.3)

We know from the feature section (6.1) that Pion supports 8 ciphers. The number
of possible values for the shuffled ciphers field are therefore:

Pciphers = Pβ(8) =
8∑

r=1
P (8, r) =

8∑
r=1

8!
(8− r)! = 109, 600 (6.4)

To find the number of permutations of the extensions field, we need the number
of possible extensions and supported values for a given extension. We found that our
various DTLS handshakes captures usually contained up to 7 extensions with APLN
(where we add one of 15 protocols).

Our implementation also shuffles supported_groups, use_srtp and
signature_algorithms, with 3, 4, and 7 possible values as identified in Section 6.1.
Since each permutation of a extension affects the fingerprint of the entire exten-
sions field, we consider the permutations dependent of each other, leading us to
Equation 6.5:

Pextensions = Pα(7)× Pβ(3)× Pβ(4)× Pβ(7)× 15

= 7!×
3∑

r=1
P (3, r)

4∑
r=1

P (4, r)
7∑

r=1
P (7, r)× 15

= 7!×
3∑

r=1

3!
(3− r)!

4∑
r=1

4!
(4− r)!

7∑
r=1

7!
(7− r)! × 15

= 994, 218, 624, 000

(6.5)

We believe the theoretical possible amount of identifying fields, Pciphers and
Pextensions, are sufficiently large for a censor to be unable to use a blocklist. To check
if the implementation actually reflects this, handshakes would need to be collected.
We ran an E2E test with pion/dtls 1000 times, and used covertDTLS to randomize
ClientHellos to check if the module produced the same fingerprint at different times.
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It would be even more realistic to use snowbox, but the setup requires a long startup
time (of multiple minutes) to initialize the handshake, as the client waits for a proxy.

We used dfind to parse and analyze the capture from the E2E runs. The capture
contained 1867 ClientHellos and 867 ServerHellos. Similarly as in Table 4.2, we
see that there are about two ClientHellos for each ServerHello. Assuming that the
randomized ClientHello is only accepted by the server if there is a ServerHello reply,
we can estimate that 2000

2 − 867 = 133 handshakes failed of 1000, which is 13% of
handshakes. This indicated that randomization is somewhat unstable, however when
the client re-tries a handshake, a new randomized ClientHello will be made and this
can be repeated until the handshake completes.

Considering finding the probability of having overlapping fingerprints as a birthday
problem, we can use the following equation for finding the expected number of unique
fingerprints taking n samples and d possible fingerprints:

E(n, d) = n

(
d− 1

d

)(n−1)
(6.6)

Using Equation 6.6, we would expect there to be E(1867, 109600) ≈ 1835 unique
ciphers. However, we found only 530 out of 1867 were distinct ciphers, being lower
than expected. We analyzed the capture and found that the maximum amount of
ciphers were 6. Rather than defaulting to all supported ciphers, pion/dtls only add
6 of 8. The number of possible permutations are therefore Pβ(6) = 1956, giving
an expected value of unique fingerprints of E(1867, 1956) ≈ 718. This corresponds
better to our findings.

A problem with randomization of the cipher suite list is that the first cipher in the
list is preferred, thus having a random first cipher might lead to the client and server
negotiating a less secure or worse performing cipher to be used. For IoT use-cases
this might be too big of a performance hit, if no careful configuration is done.

All of the 1867 ClientHello messages had unique extensions. This corresponds
well with our estimate of Pextensions, where the total number of possible fingerprints
is very high, and therefore a low chance of producing the same extensions bytes
twice.

The analysis above validates that randomization of the extensions is especially
effective technique for fingerprint-resistance, while the randomization of ciphers has
potential, if implemented carefully.
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6.4 Further work

The final section of this chapter suggest some future directions for improving our
covertDTLS tool.

The anti-censorship team is positive about adopting the covertDTLS module,
however there are work to be done to integrate it properly into Snowflake. pion/dtls is
not used directly in Snowflake, but indirectly through the use of pion/webrtc. There
are currently dependency problems that did not seem fixable without forking and
backporting most of the Pion modules (pion/dtls, pion/ice, pion/stun and pion/stun)
or waiting for a new major release of WebRTC. The Pion team just released a beta
for version 4 of WebRTC, and we hope that the hooking features are added to the
next minor beta release.

In Section 6.3.2 we discussed that randomization made the handshakes somewhat
unstable. Further testing of the stability of both the mimcry and randomization
features should be done. The users of the module might accept sacrificing some
stability and performance (by trying the handshake multiple times before succeeding)
to have fingerprint-resistance.

Adding support for mimicking of the ServerHello and CertificateRequest messages
should be possible to do, as we already implemented the hooks for those messages in
pion/dtls. To diversify which of the fingerprints are mimicked, we could also pick a
random fingerprint to mimic, not just the freshest fingerprint as we do now.

RFC8447 [51] defines 11 (non-pre-shared-key) ciphers for DTLS1.2. To make
randomization of cipher lists more effective, we could use all of the specified ciphers
for randomization, as it would yield Pβ(11) = 108, 505, 111 number of possible
fingerprints. This might make the feature even more unstable, as we annonce more
ciphers that might not be supported by Pion.
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We conclude this thesis by revisiting the original research questions, suggesting a
direction for exploratory work and reflecting on reducing the distinguishability of
DTLS.

RQ1: What kind of fingerprints can be used to identify different implementations
of DTLS?

Assuming that a censor prefers deterministic and passive fingerprints, we developed
dfind to identify such fingerprints. The tool is implemented to parse the ClientHello
and ServerHello messages from the DTLS handshake, focusing on fields that can
uniquely identify different implementations. It performs an automatic analysis of
extracted fields by querying a PostgreSQL database to find unique values, and
employs fuzzy matching techniques to detect similarities in extensions. Using the
MacMillan et al. dataset, dfind revealed that 63% of Snowflake handshakes exhibit
unique extension values, suggesting that DTLS extensions are highly effective for
fingerprinting. Additionally, during a manual analysis, we discovered that the
record_size_limit extension is absent in the pion/dtls implementation but present
in common browsers, being a fingerprint for blocking Snowflake using an allowlist
approach.

RQ2: How can we create a fingerprint-resistant implementation of DTLS for
usage in Snowflake?

We developed covertDTLS, a Go module inspired by uTLS. Instead of forking
pion/dtls and maintaining a complete DTLS implementation as uTLS does with the
standard TLS library, we contributed handshake message hooks into the upstream
code. covertDTLS uses these hooks to inject mimicked and randomized ClientHello
messaged to evade detection. The library includes a continuous delivery workflow for
generating fresh DTLS-WebRTC handshakes from popular browsers for mimicking
purposes, ensuring that the mimicking remains up-to-date and resembles common

53
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WebRTC traffic on the Internet. The randomization feature, manipulates the ciphers
and extensions lists of a ClientHello message and can be applied to any DTLS
application. Using dfind, we identified fingerprints of fresh Snowflake traffic, but
with mimicking a browser fingerprint with covertDTLS no allowlist identifiers were
found. We also demonstrated that the randomization feature inflates the possible
number of fingerprints, making a blocklist unfeasible. We conclude that mimicking
and randomization are effective countermeasures against passive, stateless, and
field-based fingerprinting.

With censorship circumventing systems adopting DTLS libraries such as uTLS
and covertDTLS to prevent passive fingerprinting, censors might see the need to start
exploring more expensive, stateful and active fingerprints (such as model learning, as
we describe in our exploratory work, Section 3.3.1). For these new attacks, we echo
the message of ‘The Parrot is Dead’ [32], with mimicking being almost impossible
to do. We also believe that randomization would not counter-act a probable active
fingerprint. The tunneling in browser approach (discussed in Section 3.3.3) might be
the only possible solution to mitigate this. We suggest work should be done bridging
the gap between protocol fuzzing and active fingerprinting. These are both fields
that essentially try to do the same thing: find discrepancies in states. Although
fuzzing is usually done for security testing to find flaws in the implementation, we
believe this is the way of exploring states of protocols.

For a final reflection we wonder if the DTLS protocol could be inherently
fingerprint-resistant. During this thesis, we have identified the extensions list as
the field in the DTLS protocol with the highest potential for use as a fingerprint.
Concealing the extensions from a passive observer would greatly reduce the likelihood
of distinguishing one implementation from another. Fortunately, this feature is
already in draft as the ECH extension, which encrypts the extensions list. However,
for ECH to be effective to prevent fingerprinting, it must be widely adopted by
popular DTLS implementations; if only one implementation supports it, it can be
easily identified. Pion primarily focuses on DTLS 1.2, whereas ECH is designed for
DTLS 1.3. Firefox has a low-priority, low-severity bug report for ECH support1, and
Chrome has a similar ticket2. While there is ongoing work in this area, we do not
see widespread adoption of ECH in the near future, motivating the importance of
our covertDTLS library in the meantime.

1https://bugzilla.mozilla.org/show_bug.cgi?id=1869753
2https://chromestatus.com/feature/6196703843581952

https://bugzilla.mozilla.org/show_bug.cgi?id=1869753
https://chromestatus.com/feature/6196703843581952
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AppendixBSQL queries for dfind

B.1 SQL query 1

db.Query(context.Background(), fmt.Sprintf("SELECT %s FROM
↪→ fingerprint where type = $1 group by %s", field, field),
↪→ fpType)

B.2 SQL query 2

db.Query(context.Background(), fmt.Sprintf("SELECT type FROM
↪→ fingerprint where %s = $1 group by type", field), cl)

B.3 SQL query 3

db.Query(context.Background(), fmt.Sprintf("SELECT max(id),
↪→ extensions FROM fingerprint WHERE type = $1 group by
↪→ extensions"), fpType)

B.4 SQL query 4

db.Query(context.Background(), fmt.Sprintf("SELECT count(id),
↪→ extensions, levenshtein(extensions, $1) FROM fingerprint WHERE
↪→ type != $2 AND levenshtein(extensions, $3) BETWEEN 1 AND 32
↪→ GROUP BY extensions"), se.Extensions, fpType, se.Extensions)

B.5 SQL query 5
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db.QueryRow(context.Background(), "INSERT INTO fuzzy_extensions (
↪→ type_id, levenshtein, extensions) VALUES ($1, $2 , $3)
↪→ RETURNING id", se.Id, fc.Distance, fc.CmpExtensions).Scan(&
↪→ result)



AppendixCDTLS handshake generation
workflow

name: Fingerprinting
on:

push:
branches:

- main
schedule:

- cron: "0 1 * * *"

jobs:
handshake-capture:

runs-on: ubuntu-latest
timeout-minutes: 5
strategy:

fail-fast: false
matrix:

browser: [firefox, chrome]
bver: [stable]

steps:
- uses: actions/checkout@v3

- name: Install tshark
run: sudo apt install -y tshark

- uses: actions/setup-node@v4

- run: npm install
working-directory: .github/workflows/browser-test/
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- name: Remove preinstalled github chromedriver/geckodriver from
↪→ $PATH

run: sudo rm /usr/bin/chromedriver /usr/bin/geckodriver

- run: Xvfb :99 &

- name: Install browser version
run: BROWSER_A=${{matrix.browser}} BROWSER_B=${{matrix.browser}}

↪→ BVER=${{matrix.bver}} DISPLAY=:99.0 node download-
↪→ browsers.js

working-directory: .github/workflows/browser-test/

- name: Get browser version
id: "browser"
run: echo "version=$(ls ./browsers/${{matrix.browser}} | sed -e

↪→ ’s/ /_/g’ -e ’s/\./_/g’ -e ’s/\-/_/g’)" >>
↪→ $GITHUB_OUTPUT

working-directory: .github/workflows/browser-test/

- name: Create directory for pcaps
run: |

mkdir ./captures/
touch ./captures/full-capture-${{matrix.browser}}_${{steps.

↪→ browser.outputs.version}}.pcap
sudo chown -R root:root ./captures
ls -lga ./captures

- name: Start tshark capture
run: sudo tshark -i any -w ./captures/full-capture-${{matrix.

↪→ browser}}_${{steps.browser.outputs.version}}.pcap -f "udp
↪→ " &

- name: Run webrtc applications with jest/selenium
run: BROWSER_A=${{matrix.browser}} BROWSER_B=${{matrix.browser}}

↪→ BVER=${{matrix.bver}} DISPLAY=:99.0 node_modules/.bin/
↪→ jest --retries=3 interop

working-directory: .github/workflows/browser-test/

- name: Kill tshark capture
run: sudo killall tshark 1> /dev/null 2> /dev/null
continue-on-error: true
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- name: Filter DTLS handshake in pcap
run: sudo tshark -r ./captures/full-capture-${{matrix.browser}}

↪→ _${{steps.browser.outputs.version}}.pcap -Y "dtls.
↪→ handshake" -w ./captures/capture-${{matrix.browser}}_${{
↪→ steps.browser.outputs.version}}.pcap

- name: Archive pcap
uses: actions/upload-artifact@v4
with:

name: fingerprint-pcap-${{matrix.browser}}_${{steps.browser.
↪→ outputs.version}}.pcap

path: ./captures/capture-${{matrix.browser}}_${{steps.browser.
↪→ outputs.version}}.pcap

commit-fingerprints:
needs: handshake-capture
runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v3

with:
ref: ${{ github.event.pull_request.head.ref }}

- name: Create fingerprint directory
run: |

mkdir -p ./fingerprints-captures
mkdir -p ${{ runner.temp }}/fingerprints-captures

- name: Download all artifacts
uses: actions/download-artifact@v4
with:

path: ${{ runner.temp }}/fingerprints-captures
pattern: fingerprint-pcap-*
merge-multiple: true

- name: Install libpcap
run: sudo apt install libpcap-dev

- name: Setup go
uses: actions/setup-go@v5
with:
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go-version: ’stable’

- name: Run pcap fingerprint parser
run: |

go get .
go run main.go ${{ runner.temp }}/fingerprints-captures

- name: Run gofmt on fingerprints.go
run: gofmt -s -w ./pkg/fingerprints/fingerprints.go

- name: golangci-lint
uses: golangci/golangci-lint-action@v4
with:

version: v1.56.2
skip-pkg-cache: true
skip-build-cache: true
args: $GOLANGCI_LINT_EXRA_ARGS

- name: Commit fingerprints
run: |

git config user.name github-actions
git config user.email github-actions@github.com
git add ./pkg/fingerprints/fingerprints.go
ls -R ${{ runner.temp }}/fingerprints-captures
ls -R ./fingerprints-captures
fingerprints=""
for file in ${{ runner.temp }}/fingerprints-captures/*; do

if ! [[ -f ./fingerprints-captures/"${file##*/}" ]]; then
mv ${{ runner.temp }}/fingerprints-captures/"${file

↪→ ##*/}" ./fingerprints-captures/
git add ./fingerprints-captures/"${file##*/}"
fingerprint=$(echo "${file##*/}" | sed -e ’s/.pcap//g’ -

↪→ e ’s/capture-//g’ -e ’s/./\u&/’)
fingerprints="${fingerprints} ${fingerprint}"

fi
done
git commit -m "Add fresh fingerprints" -m "$fingerprints"
git push



AppendixDExample of fingerprints.go

package fingerprints

//nolint:revive,unused
type ClientHelloFingerprint string

// These fingerprints are added automatically generated and added by
↪→ the ’fingerprint’ workflow

// The first byte should correspond to the DTLS version in a
↪→ handshake message

const (
chrome_linux_125_0_6422_141 ClientHelloFingerprint = "

↪→ fefd46d25ef57649ecfd0fc17d5d933462d70770ea629a4d74 ..."
↪→ //nolint:revive,stylecheck

firefox_linux_stable_126_0_1 ClientHelloFingerprint = "
↪→ fefd456d7850288d8a38e422000b4d6b94d96af38ae8292610 ..."
↪→ //nolint:revive,stylecheck

)

//nolint:unused
func GetClientHelloFingerprints() []ClientHelloFingerprint {

return []ClientHelloFingerprint{
chrome_linux_125_0_6422_141, //nolint:revive,

↪→ stylecheck
firefox_linux_stable_126_0_1, //nolint:revive,

↪→ stylecheck
}

}
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