
Computer Security - Big Project: 5G security
technical report

Theodor Signebøen Midtlien
Faculty IV - Electrical Engineering and Computer Science

Technische Universität Berlin
Berlin, Germany

t.midtlien@campus.tu-berlin.de

Abstract—This is a technical report of the course ”Computer
Security - Big Project” at the Technische Universität Berlin. The
main goal of the project was to create a testbed to explore the
implementation correctness of encryption and integrity negotia-
tion between the 5G core network and commercial-off-the-shelf
(COTS) user equipment (UE). A test setup was created with a
modified open-source software 5G core with a Software Defined
Radio (SDR) for the base station. However, COTS mobile phones
were never able to connect to our network. Test cases to check
security messages in the 5G control plane were done on a Queltec
5G research module. During the development of the testbed, a
security bug was found in Open5gs which was reported and
fixed. For further research on the topic, an easy-to-deploy VM-
based testbed was created, with tooling that supports test cases
to modify control plane messages.

Index Terms—5G, security, mobile telecommunication, net-
work protocols

I. INTRODUCTION

The fifth generation of wireless networks, commonly re-
ferred to as 5G, promises a revolution in terms of speed,
connectivity, and user experience. 5G aims to be the en-
abling technology for autonomous vehicles, massive Internet
of Things (IoT), and the tactile internet. Telecom providers
are rushing to deploy 5G networks to consumers, as it is
estimated that 5G-enabled phones will account for 62% of
smartphones shipped worldwide in 2023 [8]. This generation
of mobile telecommunication promises to improve security.
However, with every new generation, security issues have been
found.

Rupprecht et al. explored the implementation correctness
of security measures related to data encryption and network
authentication in LTE networks [16]. They made a framework
for testing LTE-enabled devices with their own LTE network
and a Software Defined Radio (SDR). The implementation of
the Security Mode Command was found not to be up to the
specification for several COTS phones. Successful man-in-the-
middle exploits were presented in their work. The project de-
scribed in this report takes inspiration from their LTE-security
research into the realm of 5G, exploring implementations of
commercial-off-the-shelf (COTS).

During the execution of this project, researchers from
the National University of Defense Technology in China
released a paper doing research on security implementations

of COTS [19] phones. They extracted security requirements
from the 5G specification into concrete inspection cases to
be verified. Implementation flaws were found and two PoC
attacks were implemented, showing that security is still an
issue in 5G. Their test setup was created with a modified
version of a popular open-source 5G core network project,
in a similar fashion as done in this project. At the time of
writing, no code has been released for their project.

The rest of this report is structured as follows. Section II
introduces preliminaries on the 5G architecture, registration
procedure, and security measures. In section III the test setup
implementation and problems that occurred are presented. The
section coming after shows some experimental results of the
test cases. Then section V describes a bug found in Open5gs.
Section VI is about an easy-to-deploy testbed based on virtual
machines. A short discussion about lessons learned is given in
section VII, and lastly, section VIII motivates further research
and the next steps after this project is finished.

II. 5G PRELIMIARY

A. 5G architecture

Figure 1 is an overview of the 5G standalone architecture,
defined in 3GPP TS 23.501 [2]. There are three main com-
ponents: 5G core (5GC), gNodeB, and user equipment (UE).
The interfaces running between the components and internally
are labeled. The network is logically split into a control plane
and a user plane. The control plane carries signaling traffic
regarding establishing links and authentication. While the user
plane carries user data to and from external networks.

The 5GC network utilizes a Service-Based Architecture
(SBA). Services are cloud-native applications connected by a
Service Based Interface (SBI), where services expose a stan-
dardized API using HTTP. Each service, also called Network
Functions (NF), has to register to the Network Repository
Function (NRF). The NRF allows services to discover all other
NFs, and enable load-balancing when multiple instances of
the same NF exist in the cloud environment. This architecture
allows self-contained services to be virtualized on general-
purpose hardware, ensuring flexibility and scalability to tele-
com providers by orchestration. The Access and Mobility
Function (AMF) is a central network function that interacts
with both gNodeB and UE, on the N2 and N1 interface



respectably. It has functionality for the following (but not
limited to): registration management, connection management,
access authentication and authorization, and NAS ciphering
and integrity protection.

gNodeB is a base station that supports the new radio access
network that user equipment connects to. This connection is
provided with the wireless Uu interface. The Uu interface runs
a functional layer called Access Stratum (AS) which is the
layer of the protocol stack that manages access on the radio
interface and transports data. On the N2 interface, the AMF
and gNodeB use the Next-Generation Application Protocol
(NGAP) to do control plane signaling.

UE is a 5G-enabled mobile phone. Each UE has a Sub-
scriber Identity Module (SIM) to identify itself in the mobile
network. A valid subscriber has a unique Subscription Per-
manent Identifier (SUPI) that is stored on the SIM-card. The
SIM-card also contains pre-shared cryptographic keys with
their home network provider, which is used for authentication
and negotiating session keys for encryption and integrity
protection. To communicate with the core network, the UE
uses the Non-Access Stratum (NAS) layer that runs above the
AS on the Uu interface and with NGAP on the N2 interface.

Fig. 1: 5G architecture with interfaces

B. 5G registration and security measures

Figure 2 shows the NAS registration procedure, defined
in TS 24.501 [3]. This procedure is used when the UE
wants to register to the core network and create a PDU
session that tunnels data traffic to the data network. During
the NAS registration request message, the UE announces
which security algorithms it supports. This list of supported
algorithms is stored in the AMF for the corresponding UE.
In the Security Mode Command (SMC) message, the AMF
chooses the highest version supported by the UE and sends
the selected algorithms together with a replay of what the
UE announced earlier. Upon receiving the Security Mode
Command message, the UE verifies the MAC and checks
that the replayed algorithms are not altered. If it accepts
the message, the UE replies with a Security Mode Complete
message and uses the algorithm picked by the AMF to encrypt-
and integrity-protect the rest of the following control plane
messages (protection of user plane is optional). The UE can

Fig. 2: NAS/NGAP registration procedure

Integrity Algorithms Encrytion Algorithms Based on
5G-IA0 5G-EA0 N/A

128-5G-IA1 128-5G-EA1 SNOW 3G
128-5G-IA2 128-5G-EA2 AES
128-5G-IA3 128-5G-EA3 ZUC

5G-IA4 - 5G-IA7 5G-EA4 - 5G-EA7

TABLE I: NAS security algorithms

also reject the Security Mode Command with a Security Mode
Reject message. The ”NAS security algorithms” field in the
SMC is a 16-bit field divided into 2 octets. The second octet
defines the type of ciphering algorithm in the 4 most significant
bits and the type of integrity protection algorithm in the 4 least
significant bits. The last bit of each type of algorithm is a spare
bit, thus the message can support up to 8 (3 bits) different
encryption and integrity algorithms. For now, the specification
only defines 4 of each. Table I shows how the algorithms are
defined. 5G-IA0 and 5G-EA0 indicate null integrity and null
ciphering respectively. 5G-IA4 - 5G-IA7 and 5G-EA4 - 5G-
EA7 are reserved for future use and not defined yet.

To provide confidentiality and prevent malicious behavior,
5G also mandates that the SUPI is never to be sent in clear text,
but an encrypted version called the Subscription Concealed
Identifier (SUCI). Earlier generation mobile networks sent
their SUPI equivalent in clear text, which was a privacy issue
and made spoofing viable.

III. SETUP AND TEST CASES

A. Hardware

• Ettus Research USRP B210
• Quectel RMU500EK 5G module
• Delock NGFF(M.2) B Key to USB3.0 (With SIM Card

Slot) Adapter
• Sysmocom sysoUSIM-SJS1/sysmoISIM-SJA2
• Panorama Antennas DMM-7-27-2SP
• iPhone 12 Pro (ios version 16.1.2)
• Motorola Moto G Stylus 5G (unkown android version)



• Dell XPS 13 7390 (Linux 6.4.12-arch1-1)
• Linode 8 GB, 4 Core shared CPU

B. Software

• Open5gs - 5G release 17 compliant. Modified version of
v2.6.1 [12]

• srsRAN Project gNB version 23.5.0 [18]
• SCAT (5G enabled)
• Ubuntu 22.04 (5.15.0-82-generic)
• Python script
• MongoDB

Fig. 3: Software Defined Radio setup

C. Setup implementation details

Firstly, a software-only setup was created, where the RAN
and UE were simulated in software. This was to make sure
that the core network was set up correctly and working, before
trying with a Software Defined Radio (SDR) by Ettus Research
called Universal Software Radio Peripheral (USRP) as seen in
Fig. 3. Additionally, time was used to inspect network traffic
and to learn how the protocol worked. This setup consisted
of Virtual Machines (VMs) on Linode, both running Ubuntu
22.04. One VM was the core network with Open5gs [14],
an Open-Source implementation of 5GC written in C, and the
other VM ran a simulated gNB and UE from UERANSIM [5].
A guide on Medium was followed for most of this setup [1].
An easily replicable modified version of this setup is presented
in section VII.

After verifying that a PDU session could successfully be
made, the simulated RAN was replaced with the USRP
running srsRAN Project [17] v23.5.0 with the Ettus Research
UHD radio driver [15] on a Dell XPS 13 laptop with 4 cores
and 16GB ram. The simulated UE was replaced by a Quectel
RMU500EK 5G module and board. For the module to be
able to connect, a SIM card was needed. Both a Sysmocom
sysmoISIM-SJA2 and the older sysoUSIM-SJS1programmable

SIM cards were configured to have an IMSI/SUPI that was
registered in the subscriber database in the core network.
A modified version of SCAT [7] was used to generate 5G
RRC/NAS GSMTAP packets, that were captured and analyzed
in Wireshark with the scat lua dissector. This setup was able
to successfully register and create a PDU session a few times,
but a lot of time went into troubleshooting what caused the
instability. An accident also occurred with the 5G module
which will be explained together with other problems in
subsection D.

To facilitate modification of the Security Mode Command,
Open5gs was modified. The modified version hooked the
security mode command builder function and communicated
via TCP sockets with a Python script that read which EA/IA
algorithm to use from a yaml file. The response from the UE
of the modified security mode command message was stored
in a Mongodb. This early PoC version was hardcoded and
only supported test cases that modified the selected EA/IA
and MAC in the security mode command message. Since time
with the hardware was limited and a lot of troubleshooting
had to happen simultaneously, this PoC version was used for
preliminary experimental results. A more refined and modular
version has since been created and is presented in section VI.

D. Challenges

The board that holds the Quectel 5G module was acciden-
tally over-voltaged by connecting a stronger power adapter.
The board does not even require a separate connected power
adapter as it gets all its power from the USB3 interface.
Unfortunately, the 5G module did not power on after the
accident. A workaround was to still use the 5G module with
the antennas on the board. An NGFF(M.2) to USB3 adapter
with a SIM card slot was used to connect the 5G module
directly to Ant.0 and Ant.3 as shown in Fig. 4.

Using the 5G module with SCAT, RSRP (average power
level) measurements of the different frequency bands in the
air were given. This measure highly affects the stability of
the connection and if the module even connected to the 5GC
successfully. Most of the time the registration failed early in
the process during NR MAC RACH Msg3. Fine-tuning the
transmit and receive power levels of the USRP, in addition
to the physical distance and direction of the radio and the
module antennas took a lot of tries. This is common for 5G
as the radio waves are shorter and more directional and careful
configuration has to be done to enable stable transmission.

Both the commercial off-the-shelf (COTS) UEs, (iPhone 12
Pro and Motorola Moto G Stylus 5G) were never able to detect
or connect to the 5G core network. For the Android phone,
an application called ”5G Only” was installed. It showed
the 5G radio networks it detected with the Absolute radio-
frequency channel number (ARFCN) and it’s corresponding
signal strength. However, our network newer showed up in
this app or SCAT which was also connected to the UE. Two
main reasons could be the cause of this:

1. The antenna is only designed to work with 2G/3G/LTE
in the range of 700 MHz to 3 GHz. The n78 band was chosen



Fig. 4: Module and adapter setup

to make use of the NR regional license band, which is in
the range of 3300 to 3800 MHz. Unfortunately, our antenna
might not work well enough in this range for the COTS UE
to detect the signal. This was discovered after the experiments
were carried out. However, the 5G module did detect signals,
but somewhat unstable. n2 (1930 MHz) FDD was also tried
out but was also not detected.

2. This leads us to believe that there are clock synchroniza-
tion issues. This is a known troubleshooting point mentioned
in the well-written srsRAN project documentation [17]. Thus,
our USRP probably needs an external hardware clock like a
Leo Bodnar GPS Reference Clock to work with UE. It is worth
noting that another set of antennas was used without any luck,
which would also strengthen the theory of needing an external
clock.

IV. EXPERIMENTAL RESULTS

See table II for the created test cases and their results. The
test cases were designed to test defined and undefined security
algorithms as well as null integrity (as it should never accept
it). No unexpected behavior happened and the implementation
of the Queltec 5G module seemed to be fine. NIA1 and NEA0
were applied after modifying the messages, while the ”NAS
security algorithms” fields were modified. The SECURITY

Integrity field Ciphering field MAC Response
0x0 0x0 Unaltered Reject
0x1 0x0 Unaltered Complete
0x2 0x0 Unaltered Reject
0x3 0x0 Unaltered Reject
0x4 0x0 Unaltered Reject
0x5 0x0 Unaltered Reject
0x6 0x0 Unaltered Reject
0x7 0x0 Unaltered Reject
0x8 0x0 Unaltered 5GMM status
0x0 0x0 0x0000000 Reject
0x1 0x0 0x0000000 Reject
0x2 0x0 0x0000000 Reject
0x3 0x0 0x0000000 Reject
0x4 0x0 0x0000000 Reject
0x8 0x0 0x0000000 5GMM status
0x1 0x1 Unaltered Reject
0x1 0x2 Unaltered Reject
0x1 0x3 Unaltered Reject
0x1 0x4 Unaltered Reject
0x1 0x5 Unaltered Reject
0x1 0x6 Unaltered Reject
0x1 0x7 Unaltered Reject
0x1 0x8 Unaltered 5GMM status
0x1 0xf Unaltered 5GMM status
0xf 0x0 Unaltered 5GMM status

TABLE II: Test cases with experimental results

MODE REJECT contained the cause 24: unspecified. The
UE responded with a 5GMM status message whenever an
algorithm larger than 0x7 was used. This message is used to
report certain error conditions detected upon receipt of 5GMM
protocol data, and is a reasonable response to algorithms that
should not be supported. The status message contained cause
96: invalid mandatory information. A pcap file for this test run
can be found in PoC folder in the 5G-testbed repository on
GitHub created for this project. [10]

V. OPEN5GS BUG

In version v2.6.1 of Open5gs, a bug that caused denial of
service of the NRF was found [14]. This bug was discovered
when creating a refined setup after the PoC to facilitate more
stable testing with a usable tool for other researchers. The
idea was to create a custom network function to modify
NAS messages. This would be modular, done in a more ”5G
native” way, and be more easily ported to other 5G core
implementations. The NF was written in Go. To make new
NFs discoverable and usable by other NFs by the SBI, it
should register at the NRF, as mentioned in section II. The
NRF should support custom NF types as is mentioned in the
5G specification TS 29.510 V17.0.0 (section 5.2.2.2.2)[4]:

”The NRF shall allow the registration of a Network Func-
tion instance with any of the NF types described in clause
6.1.6.3.3, and it shall also allow registration of Network
Function instances with custom NF types (e.g., NF type values
not defined by 3GPP, or NF type values not defined by this
API version).”

However, for Open5gs, this was not the case. When regis-
tering a NF with the the nfType set to CUSTOM INF it fatally
crashes the NRF:



curl -v -X PUT -d ’{ \
"nfInstanceId":"0b8a8d59-af80-4fb7-8645-

b832fd69d94a", \
"nfType":"CUSTOM_INF", \
"nfStatus":"REGISTERED", \
"ipv4Addresses":["127.0.13.37"]}’ \
--http2-prior-knowledge \
http://127.0.0.10:7777/nnrf-nfm/v1/nf-

instances/0b8a8d59-af80-4fb7-8645-
b832fd69d94a \

/

This bug was reported with a GitHub issue [11] and the
maintainers fixed the bug promptly [9]. A CVE ID was
also requested from Mitre, where CVE-2023-42367 has been
reserved for the security bug.

Only nfTypes in defined by 3GPP are supported so far,
all other types are rejected. The NRF should allow custom
nfTypes as well. Thus not compiling to release 17, even though
Open5gs claims to be compliant. This bug can have security
consequences as most likely many 5G networks run some
core based upon Open5gs. However, the nf-instances endpoint
should be protected, so the attacker would need access to the
SBI of the NRF somehow.

VI. VIRTUAL MACHINE-BASED TESTBED

Re-producible, easy to set up. Use Vagrant to create two
virtual machines, one for 5GC and another for RAN/UE [10].
Go server to parse yaml file with test cases and modify
intercepted messages from the modified core. The interceptor
supports test cases with arbitrary hex strings modification of
the messages, as well as intercepting any message type. This
allows for powerful test cases. A custom SBI endpoint was
created to support enabling/disabling intercepting messages in
the core.

Fig 5 shows a simplified state-machine visualization of
the flow of running test cases. Solid black lines are SBI
interactions, the dotted black lines represent data flow via TCP
sockets. Red solid lines are for state transitions and dotted red
lines abstract away other states that might happen in between
two states. When the Go interceptor starts, it makes an HTTP
request to enable intercepting in Open5gs. In the imsi state,
the go interceptor sends the IMSI set by the test case file to
open5gs, which saves it to know from which UE it should
intercept. In the msg type state, the interceptor receives the
outgoing message types from open5gs. If the received message
type matches what the test case contains (otherwise looping
state), then it replies indicating to intercept the plain message
or the encrypted message. Going into msg state, the inter-
ceptor receives the intercepted message, makes modifications
and replies with the modified message, and transitions into
res state. In this state, the interceptor receives the message
type of whatever message open5gs received after sending out
the modified message. This response is saved in a Mongodb.
When open5gs sends the response from recv ngap, it disables
intercepting. It has to be enabled again by the interceptor to
allow more test cases. This way, Open5gs can operate in a
”normal” way as much as possible. After 5 seconds in this

state, the interceptor will issue an SBI request to deregister
the UE. If there are more test cases the interceptor trantitions
into msg type state and enable interception again. If not, then
the interceptor exits.

This setup could also be used with a hardware RAN,
however, this has not been tested directly as this testbed was
created after losing access to the hardware USRP. Just using
the 5GC virtual machine and using the USRP as RAN, with
COTS UE. Configurations for the USRP and the captured
pcaps are given in the repository.

VII. DISCUSSION

Troubleshooting radio is tedious, as the medium is in-
herently lossy and a lot of factors influence performance.
Factors that were taken into consideration were: distance,
TX/RX power, signal direction, frequency bands, physical cell
id, tracking area code, clock synchronization, and different
PLMN and imsi to force roaming. The use of a spectrum
analyzer might have made this process a bit easier. Without
it, troubleshooting was based on guesstimates. The time with
hardware was limited, and with that time, the setup with the
USRP was quite inconsistent. During the experimental results
in section IV, manual intervention of restarting the UE had to
be done.

However, a lot was learned about 5G along the way,
especially the core network. The focus was initially UE
implementation, but surprisingly a bug was found in the
core implementation. During the later stages of the project,
interaction with the Open5gs open-source community about
the bug and missing features was done. Being an introduction
to take part in further development of Open5gs.

This project motivates creating a consistent setup for other
researchers who want to dive deeper into security in the 5G
protocol. Time should be used for creating useful test cases,
and doing actual verification by running tests consistently, not
fighting with an inconsistent setup, and using a lot of time for
troubleshooting.

The 5G specification is very complex, being put together of
many long specification documents. All of the features may
be overlooked and not implemented correctly in many parts of
the system, not only the UE, as shown by the Open5gs bug.
However, this might be harder to test, as telecom providers
run their own custom software for the 5G core. These are
black boxes in the network but are most likely based on the
Open5gs.

VIII. FURTHER WORK

The main goal of what we initially wanted to achieve is still
to be completed. A natural next step for further research is to
take the refined testbed that has been created and connect a
SDR RAN with an external clock to be able to connect and
test COTS 5G-enabled devices.

The test cases could be extended to test the Identity Type
field in the Identity Request message. This would test a clearly
defined security requirement of the specification. As the UE
shall not send its SUPI unencrypted.



To expand the testbed even further, more advanced fuzzing
capabilities could be added. The Computer Security Group at
Berlin University of Technology has created tooling for Man-
in-the-Middle fuzzing of binary files[6]. A network protocol
fuzzer, like fuzzowski [13], would also be highly relevant to
use. This would be more rigorous testing of protocol fields,
rather than manually crafting test cases.

Finally, work has to be done on missing features regarding
custom network functions in Open5gs.

IX. CONCLUSION

REFERENCES

[1] (x.x)eranga. “Deploying 5G Core Network with
Open5GS and UERANSIM”. In: (Nov. 2021). URL:
https://medium.com/rahasak/5g-core-network- setup-
with-open5gs-and-ueransim-cd0e77025fd7.

[2] 3GPP. TS 23.501 V17.0.0; System architecture for the
5G System (5GS). 3GPP. 2021.

[3] 3GPP. TS 24.501 V17.0.0; Non-Access-Stratum (NAS)
protocol for 5G System (5GS). 3GPP. 2020.

[4] 3GPP. TS 29.501 V17.0.0; 5G System; Principles and
Guidelines for Services Definition. 3GPP. 2020.

[5] aligungr. UERANSIM. https : / / github . com / aligungr /
UERANSIM. 2023.

[6] fgsect. FitM, the Fuzzer in the Middle. https://github.
com/fgsect/FitM. 2023.

[7] fgsect. SCAT: Signaling Collection and Analysis Tool.
https://github.com/fgsect/scat. 2022.

[8] IDS. “Global Smartphone Shipments Expected to De-
cline 1.1% in 2023 as Recovery Is Pushed Forward
into 2024 Amidst Weak Demand, According to IDC
Tracker”. In: (). URL: https://www.idc.com/getdoc.jsp?
containerId=prUS50441423.

[9] Sukchan Lee. Open5gs [NRF] Fixed NRF
crash when Custom nfType. https : / /
github . com / open5gs / open5gs / commit /
2aa12449aade5f50ed4710d9ac2eb8e1b96c43b9. 2023.

[10] Theodor Signebøen Midtlien. 5G-testbed. https://github.
com/theodorsm/5G-testbed. 2023.

[11] Theodor Signebøen Midtlien. Open5gs issue 2576.
https://github.com/open5gs/open5gs/issues/2576. 2023.

[12] Theodor Signebøen Midtlien. Open5gs testcase fork.
https: / /github.com/theodorsm/open5gs/ tree/ testcases.
2023.

[13] nccgroup. Fuzzowski. https : / / github . com / nccgroup /
fuzzowski. 2023.

[14] Open5gs. Open5gs. https : / / github . com / open5gs /
open5gs. 2023.

[15] Ettus Reseach. USRP Hardware Driver (UHD™) Soft-
ware. https://github.com/EttusResearch/uhd. 2023.

[16] David Rupprecht, Kai Jansen, and Christina Pöpper.
“Putting LTE Security Functions to the Test: A Frame-
work to Evaluate Implementation Correctness”. In: 10th
USENIX Workshop on Offensive Technologies (WOOT
16). Austin, TX: USENIX Association, Aug. 2016.

URL: https : / / www. usenix . org / conference / woot16 /
workshop-program/presentation/rupprecht.

[17] srsran. srsRAN gNB with COTS UEs. https://docs.srsran.
com/projects/project/en/latest/tutorials/source/cotsUE/
source/index.html. 2023.

[18] srsran. srsRAN Project. https : / / github . com / srsran /
srsRAN Project. 2023.

[19] Chuan Yu et al. “SecChecker: Inspecting the Secu-
rity Implementation of 5G Commercial Off-The-Shelf
(COTS) Mobile Devices”. In: Computers & Security
132 (Sept. 2023), p. 103361. ISSN: 01674048. DOI: 10.
1016/j.cose.2023.103361.

https://medium.com/rahasak/5g-core-network-setup-with-open5gs-and-ueransim-cd0e77025fd7
https://medium.com/rahasak/5g-core-network-setup-with-open5gs-and-ueransim-cd0e77025fd7
https://github.com/aligungr/UERANSIM
https://github.com/aligungr/UERANSIM
https://github.com/fgsect/FitM
https://github.com/fgsect/FitM
https://github.com/fgsect/scat
https://www.idc.com/getdoc.jsp?containerId=prUS50441423
https://www.idc.com/getdoc.jsp?containerId=prUS50441423
https://github.com/open5gs/open5gs/commit/2aa12449aade5f50ed4710d9ac2eb8e1b96c43b9
https://github.com/open5gs/open5gs/commit/2aa12449aade5f50ed4710d9ac2eb8e1b96c43b9
https://github.com/open5gs/open5gs/commit/2aa12449aade5f50ed4710d9ac2eb8e1b96c43b9
https://github.com/theodorsm/5G-testbed
https://github.com/theodorsm/5G-testbed
https://github.com/open5gs/open5gs/issues/2576
https://github.com/theodorsm/open5gs/tree/testcases
https://github.com/nccgroup/fuzzowski
https://github.com/nccgroup/fuzzowski
https://github.com/open5gs/open5gs
https://github.com/open5gs/open5gs
https://github.com/EttusResearch/uhd
https://www.usenix.org/conference/woot16/workshop-program/presentation/rupprecht
https://www.usenix.org/conference/woot16/workshop-program/presentation/rupprecht
https://docs.srsran.com/projects/project/en/latest/tutorials/source/cotsUE/source/index.html
https://docs.srsran.com/projects/project/en/latest/tutorials/source/cotsUE/source/index.html
https://docs.srsran.com/projects/project/en/latest/tutorials/source/cotsUE/source/index.html
https://github.com/srsran/srsRAN_Project
https://github.com/srsran/srsRAN_Project
https://doi.org/10.1016/j.cose.2023.103361
https://doi.org/10.1016/j.cose.2023.103361


APPENDIX

A. State machine

Fig. 5: Basic state machine visualization of the go interceptor
and its interactions with the modified Open5gs version


	Introduction
	5G Prelimiary
	5G architecture
	5G registration and security measures

	Setup and test cases
	Hardware
	Software
	Setup implementation details
	Challenges

	Experimental Results
	Open5gs bug
	Virtual machine-based testbed
	Discussion
	Further Work
	Conclusion
	Appendix
	State machine


