Fingerprint-resistant DTLS for usage in Snowflake

Theodor Signebgen Midtlien

Abstract

Internet censorship circumvention requires continuous effort and
attention in order to achieve its goals. This paper aims at making the
Pion DTLS library used in Snowflake less prone to fingerprinting
and blocking. We developed a tool for analyzing and passively iden-
tifying field-based fingerprints of DTLS, validated using a dataset
containing known fingerprints. Our findings revealed that the ex-
tensions field is particularly vulnerable to identification. To address
this, we propose and implement covertDTLS which extends the Pion
DTLS Go library with handshake hooking to offer mimicry and
randomization features inspired by uTLS. In addition, we created
a continuous delivery pipeline to generate fresh DTLS-WebRTC
handshakes based on popular browsers, allowing researchers to
monitor changes and ensuring that mimicking remains up-to-date.
Our results indicate that mimicking and randomization are effective
countermeasures against allowlisting and blocklisting respectively.
We further analyze the evolution of DTLS-WebRTC handshakes col-
lected from browsers over a year and their impact on Snowflake’s
distinguishability. To fully understand the impact of our proposed
solution, we also deployed standard Snowflake proxies and im-
proved ones using our fingerprint-resistant DTLS library, and report
our findings. Our observations suggest that the prompt adoption
of DTLS 1.3 is necessary to keep pace with browser updates, and
our fingerprint-resistant library demonstrated stability when mim-
icking DTLS 1.2 handshakes, but less so with the randomization
approach. These obtained results suggest that our modifications
to Snowflake effectively reduce the fingerprintability of DTLS traf-
fic, enhancing its capability to bypass censorship. However, we
also argue that continuous monitoring and prompt adaptation to
evolving Internet protocols and applications is essential for the
anti-censorship community.

Keywords

Censorship Circumvention, DTLS, Network Protocol Fingerprint-
ing, Snowflake

1 Introduction

The Internet facilitates global sharing of information and ideas,
such freedom of opinion and expression are protected by Article
19 of the United Nations Universal Declaration of Human Rights
(UDHR) [20]. However, there are diverse attempts by censors (e.g.
governments, institutions, and service providers) to violate these
rights by regulating, monitoring, or, in some cases, by entirely
stifling access to the open Internet [22, 23, 30]. This phenomenon,

This work is licensed under the Creative Commons Attribu- @
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies YYYY(X), 1-9

© YYYY Copyright held by the owner/author(s).
https://doi.org/XXXXXXX.XXXXXXX

David Palma
Norwegian University of Science and Technology
Trondheim, Norway

known broadly as Internet censorship, represents both a technical
challenge and a significant global societal concern, impacting free
speech and human rights at large. Internet access is even being
censored in regions often considered “free”, such as the European
Union (EU) [29, 32].

One Internet censorship circumvention system that is commonly
used in the Tor Browser and Orbot is Snowflake![7]. Operating
on the principle of volunteerism and decentralization, Snowflake
employs ephemeral proxies run by volunteers using Web Real-
Time Communication (WebRTC) [5] peer-to-peer connections. So
far, censors have not shown willingness to block WebRTC as a
protocol [7], which allows Snowflake to blend in with the long tail
of other WebRTC traffic.

No censorship circumvention system is perfect, and Snowflake
has been successfully blocked at multiple occasions [7]. An exam-
ple of this is Russia blocking Snowflake in May of 2022 [1]. This
was accomplished by fingerprinting unique ClientHello messages
associated to Snowflake using the Datagram Transport Layer Se-
curity (DTLS) protocol, which is used by WebRTC. This method
has previously been discussed in literature and was a known at-
tack vector [18]. Reactive measures have been deployed by the Tor
project to remove the distinguishing ClientHello fingerprint in the
DTLS implementation by Pion?, but these were not integrated in
Snowflake and other weaknesses may still exist [2].

Transport Layer Security (TLS), being a similar protocol to DTLS,
can provide some insights into fingerprint resistance, as it has
been more widely studied for use in censorship circumvention.
Frolov and Wustrow [14] found multiple ways of fingerprinting TLS,
including the ClientHello method used to block DTLS in Snowflake.
To handle this problem, the researchers developed a library called
uTLS® that aims to protect against fingerprinting. However, no
such library exists for DTLS, which concerns the team behind and
actively developing Snowflake.

This paper extends our previous work (Midtlien’s Master’s thesis
at the Norwegian University of Science and Technology) on ‘Reduc-
ing distinguishability of DTLS for usage in Snowflake’ [19], which
is presented in Section 3. We developed dfind*, a tool for analyzing
and passively discovering field-based fingerprints of DTLS. This
tool was validated using a dataset with known fingerprints, and
found that the extensions field was especially vulnerable for identi-
fication. To combat such fingerprints, we propose and implement
a Go library inspired by uTLS that we named covertDTLS’. The
module extends the Pion DTLS library with handshake hooking to
offer mimicry and randomization features. To ensure that mimick-
ing remains up-to-date, we developed a novel continuous delivery
workflow for generating fresh DTLS-WebRTC handshakes based

!https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake
Zhttps://github.com/pion

3https://github.com/refraction-networking/utls
*https://github.com/theodorsm/dfind

Shttps://github.com/theodorsm/covert-dtls

https://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXX.XXXXXXX
https://github.com/pion
https://github.com/refraction-networking/utls
https://github.com/theodorsm/dfind
https://github.com/theodorsm/covert-dtls

Proceedings on Privacy Enhancing Technologies YYYY(X)

on popular browsers. We concluded that mimicry and randomiza-
tion are effective countermeasures against passive, stateless, and
field-based fingerprinting.

We further explore how DTLS fingerprints from popular browsers
(Firefox and Chrome) changed over the course of a year and how
this affects the distinguishability of Snowflake. We deployed stan-
dard Snowflake proxies and improved ones using our fingerprint-
resistant DTLS library. Traffic from these deployments is analyzed
and we present lessons learned that may contribute to finding new
areas of research on Internet anti-censorship.

2 Background and related work
2.1 Snowflake

| Censored area y ﬁ

! / Broker

| L B
§ ! 1

B R e

: WebRTC

Clent 1 pris 1
1 1

T 1 Proxies
NAT / firewall

Figure 1: Architecture of Snowflake

The Snowflake circumvention system comprises three primary
participants: the client, proxies, and a broker. Its architecture, illus-
trated by Figure 1, shows the essential components and commu-
nication pathways. The client is an individual utilizing Snowflake
within a region where a censor blocks traffic to specific destinations
(IP addresses). To circumvent these IP blockages, the client engages
a broker to identify an available proxy in a process known as ren-
dezvous. The broker matches the client with an idle proxy, which
allows routing the client’s traffic through an encrypted WebRTC
data channel. Proxies are managed by volunteers with unblocked
IPs, granting access to the open internet.

There are three main types of proxies: webextensions, badge and
standalone. The webextension is a browser extension that volun-
teers can run that opens a WebRTC connection in the background
using the browser networking stack. The badge can be embedded in
websites and visitors can run a Snowflake proxy using the browser
networking stack as long as the tab is open. Finally, the standalone
version is a Go binary that can be run on a desktop or server from
the command line. This type uses the same Pion WebRTC/DTLS
networking stack as the Snowflake client.

To initiate a connection with the broker, the client must use an
indirect, unblockable channel to bootstrap into Snowflake. Three
methods are supported for rendezvous: domain fronting®, Accel-
erated Mobile Pages cache and Simple Queue Service [7]. Once
the indirect channel is established, the client communicates with
the broker, which pairs the client with an idle proxy from its pool,
based on self-reported Network Address Translation (NAT) types.
The broker then facilitates the exchange of Session Description

Tt is worth noting that this approach requires anti-censorship teams to constantly
update the content providers they use for domain fronting, as many of the providers
are stopping their support of the service

Theodor Signebgen Midtlien and David Palma

Protocol (SDP) [6] offers and answers between the client and proxy,
as specified by WebRTC.

Following rendezvous, the client and proxy must navigate NAT
traversal during the connection establishment phase. Devices be-
hind NATs and firewalls typically only allow outgoing connections
initiated by the client. To address this challenge, WebRTC employs
the Interactive Connectivity Establishment (ICE) [17] procedure,
which enables direct communication channels through NATs and
firewalls. The ability to establish a connection between a client
and proxy during the ICE procedure depends on using Session
Traversal Utilities for NAT (STUN) [21] and servers supporting Tra-
versal Using Relays around NAT (TURN) [24]. Upon successfully
establishing a connection, the client and proxy can exchange traffic.

The final phase of Snowflake involves data transfer, which in-
cludes a persistent session layer and an ephemeral data chan-
nel. A persistent session is maintained using Turbo Tunnel [11],
which adds sequence numbers and acknowledgments to the data
exchanged between the client and a bridge. This ensures that if the
current proxy becomes unavailable, the data will be retransmitted
through a new proxy. For the ephemeral channel, WebRTC data
channels are used, facilitating the transmission of encrypted and
integrity-protected data via DTLS.

2.2 DTLS

DTLS is a protocol designed by the Internet Engineering Task Force
(IETF) to provide secure communication for datagram-based ap-
plications, similar to how Transport Layer Security (TLS) secures
applications over TCP. DTLS comprises two primary components:
the handshake and the record layer. The DTLS handshake is respon-
sible for negotiating cryptographic algorithms and keys between
the client and server. Once these parameters are established, the
DTLS record layer takes over, encapsulating the data from the upper
layers into encrypted records that are transmitted over UDP.

Client Server
ClientHello 1T -—>
<----2 HelloVerifyRequestx
ClientHellox* 3 -——>
ServerHello
Certificatex
ServerKeyExchange*
CertificateRequest*
<---- 4 ServerHelloDone
Certificatex
ClientKeyExchange
CertificateVerifyx*
[ChangeCipherSpec]
Finished 5 ---->
[ChangeCipherSpec]
<---- 6 Finished

Figure 2: Messages for the full DTLS 1.2 handshake. Optional
messages are indicated with an asterisk.

DTLS has undergone several iterations to enhance security and
performance. DTLS 1.2 built upon TLS 1.2 was introduced in RFC
6347 [25] in 2012 and is still the most common version deployed
on the internet [10]. The most recent version is DTLS 1.3, based
on TLS 1.3. It features a streamlined handshake that reduces the
number of round-trips, lowering latency. This version also provides
default forward secrecy and elimination of outdated cryptographic
algorithms. DTLS 1.3 became a standard in 2022 with RFC 9147 [27],
but has seen little adoption.

Figure 2 shows the full DTLS 1.2 handshake between the two
parties to negotiate security parameters, authenticate each other,
and establish shared secrets for encrypted communication.

The handshake begins with the client sending a ClientHello mes-
sage to the server, containing the protocol version, a randomly
generated number (ClientRandom), SessionID, supported cipher
suites, compression methods, and any relevant extensions such
as Application-Layer Protocol Negotiation (ALPN) and Supported-
Groups.

To prevent denial-of-service attacks from spoofed IP addresses,
the server may respond with a HelloVerifyRequest message. It in-
cludes a stateless cookie created as a HMAC of a secret, the client
parameters and IP. The client must echo back cookie in a subse-
quent ClientHello message. This step is optional but recommended
to verify the client’s reachability and mitigate resource exhaustion
risks.

Upon receiving the ClientHello, the server responds with a Server-
Hello and optional messages such as Certificate, ServerKeyExchange
and CertificateRequest. The ServerHello message includes the server’s
chosen protocol version, a randomly generated number (ServerRan-
dom), SessionID, chosen cipher suite, compression method, and any
relevant extensions. The ServerHelloDone message indicates the end
of the server’s initial handshake messages.

The handshake concludes with sending the ChangeCipherSpec
and Finished messages. The ChangeCipherSpec message signifies a
switch to the newly negotiated cipher suite and keys. The Finished
message is a hash of the entire handshake encrypted with the new
session keys by the server. The client and server can now send
encrypted records to each other.

To provide extra flexibility, DTLS utilizes extensions in the Clien-
tHello and ServerHello messages. The extension field can be of
variable size, with a maximum size of 2 bytes, allowing different
amounts of extensions to be in any order. This is a way to nego-
tiate additional features without altering the core protocol. These
extensions are specified in various RFCs, often for both TLS and
DTLS. The Encrypted Client Hello (ECH) is an extension currently
in draft for TLS/DTLS 1.3 that aims to enhance privacy and security
by encrypting parts of the ClientHello message [26].

2.3 Fingerprinting
Network protocol fingerprinting is the process of identifying and
classifying network protocols based on their unique characteris-
tics or patterns, similar to how fingerprints uniquely identify indi-
viduals. These protocol-specific patterns enable the detection and
analysis of the communication protocols used within a network.
Guogqiang Shu and David Lee introduced a formal methodology
for network protocol fingerprinting, outlining a taxonomy that

Proceedings on Privacy Enhancing Technologies YYYY(X)

addresses the challenges of fingerprinting through three main com-
ponents: active and passive experiments, fingerprint discovery, and
fingerprint matching [28]. Active fingerprinting involves engaging
with the target system by sending specific probes or queries and an-
alyzing the responses to gather information about the protocol and
its implementation. While this method can be intrusive and may
cause some disruption to the target system, it is highly effective
in extracting detailed protocol information. Passive fingerprinting
relies on observing and analyzing network traffic patterns without
direct interaction with the target system. This approach is less intru-
sive and does not risk disrupting the target system. However, it may
be less accurate than active fingerprinting. Passive fingerprinting
utilizes deep packet inspection (DPI) to examine protocol fields or
analyze statistical traffic patterns.

Fingerprint discovery involves systematically uncovering a fin-
gerprint for an unknown implementation. This process gathers
comprehensive information to create a unique identifier for the
protocol. Fingerprint matching is the process of comparing col-
lected fingerprints to determine if they originate from the same
protocol implementation. This can be done through exact one-to-
one mapping or probabilistically, assessing the likelihood that two
fingerprints correspond to the same implementation.

Fifield and Epner [12] are the first publicly to explore ways of fin-
gerprinting parts of the Snowflake system. The authors conducted
a manual analysis of different WebRTC applications to identify fea-
tures that could be used to fingerprint them. Their findings revealed
significant fingerprinting potentials in the DTLS and STUN/TURN
protocols used by WebRTC, including differences in cipher suites,
extensions, and certificate details.

The work of MacMillan et al. [18] is the most prominent work
on detecting Snowflake traffic by fingerprinting DTLS handshakes.
They collected the largest dataset to date with 6,500 handshakes of
different WebRTC based applications. They extracted features from
DTLS fields and performed classification with the random forest
machine learning algorithm. Although their dataset is publicly
available, their classification software is not.

Chen et al. [8] and Holland et al. [15] also take a machine learn-
ing approach to discovering Snowflake. Both use the MacMillan
et al. dataset of DTLS handshakes and claim high accuracy of de-
tection. To our knowledge these approaches has not been adopted
in the real world.

For fingerprinting, we consider only the DTLS handshake to be
in scope for this paper, not the encrypted record layer. We will also
not explore traffic pattern (flow) analysis (e.g. timings, packet size,
speed) such as Wang et al. [34] and Xie et al. [37]. Even though
they claim promising results, we believe it is difficult to know if the
statistical properties are of the DTLS implementation or the network
itself. Such approaches require highly-controlled environments to
not fingerprint the underlying network. Bocovich et al. [7] also
warn against this, as traffic analysis attacks have historically been
overestimated due to un-realistic base rates [33].

2.4 Fingerprint resistance

There are two main obfuscation techniques used in practice to
combat fingerprinting: mimicking and randomization [13].

Proceedings on Privacy Enhancing Technologies YYYY(X)

Mimicking, also known as mimicry or steganography, aims to
replicate the behavior of a protocol. The goal is to make it chal-
lenging to distinguish between the genuine protocol and the ob-
fuscating protocol. Houmansar et al. [16] argue that mimicking
application layer protocols is particularly challenging and funda-
mentally flawed, a criticism summarized by the phrase “The parrot
is dead”.

Randomization, often referred to as polymorphism, involves
implementing random protocol features to make the traffic appear
dissimilar to any protocol or pattern that a censor might block.
The objective is to eliminate all statistical characteristics, causing
the traffic to resemble “junk” data. However, this approach can be
ineffective if the censor employs allowlist blocking, as the traffic
would not match any approved protocols.

While Snowflake uses DTLS, the similarities with TLS make
it worth exploring the realm of TLS fingerprinting, and existing
mitigation techniques. For example, Sergey Frolov and Eric Wus-
trow developed the fingerprint-resistant uTLS library [14]. The
library employs multiple techniques for obfuscating traffic: low-
level access to the handshake, randomized ClientHello fingerprint,
mimicking ClientHello messages of other implementations and use
of multiple fingerprints. For their mimicked fingerprints, they col-
lected fingerprints from real browsers and rely on volunteers to
update future fingerprints in the library.

2.5 Capabilities of censors

Tschantz et al. [30] did a study in 2016 to ground the evaluation of
circumvention approaches in empirical observations of real censors.
They found that censors prefer simple cost-effective solutions, with
mostly passive monitoring (e.g. DPI) and some active probing. They
suggest that censorship circumventors should concern themselves
more with low-cost exploits. We assume that a censor will prefer
simple, stateless and deterministic solutions to perform detection
and blocking. Our focus is to prevent such low-hanging fruit.

We further assume that a censor prefers passive fingerprinting
over active probing. The Great Firewall of China have been deploy-
ing active probing for Shadowsocks [4, 36] and obfs3 [9]. This is
probably due to it not being possible to perform passive field based
fingerprinting, because of the randomized nature of the protocols.
Active fingerprints are hard to discover, because you have to find a
bug or side-channel of the protocol. A censor would also have to
deploy infrastructure to send the fingerprint payloads. There have
not been any active attacks on Snowflake, as far as we know.

3 Fingerprinting-resistant Snowflake

Our primary objective is to reduce the fingerprintability of DTLS
when utilized within Snowflake. Several approaches can be con-
sidered to achieve this objective, such as protocol obfuscation or
traffic shaping to change data packet flows to mimic regular, non-
censored traffic. Traffic shaping is already supported in Snowflake,
but it has not been put to use yet [7]. Thus we looked towards
the DTLS handshake process that has been blocked by fingerprints
before. Apart from encrypted ClientHello (ECH) messages, which
is only available in version 1.3 of DTLS, other techniques must be
developed to improve Snowflake’s resistance to fingerprinting.

Theodor Signebgen Midtlien and David Palma

To better understand the problem at hand, a DTLS fingerprint
discovery tool was created to simulate a censor discovering unique
fingerprints of Snowflake. The tool, dfind, parses DTLS handshakes
and extracts features such as length, cipher suites, and extensions
bytes within the hello messages. To discover fingerprints, the data-
base is queried as part of an automatic analysis step with two
routines. One routine finds unique values of fields which are iden-
tifying for a certain implementation type, the other finds similar
hex-strings in the extensions of each type, so that they can be fur-
ther manually analyzed. This artifact was validated against the
dataset by MacMillan et al. [18] and found that extensions was
the most prominent feature for fingerprinting [19], as multiple
researchers have pointed out before [12, 18].

Considering the MacMillan et al. [18] dataset to be outdated,
we developed a continuous deployment (CD) setup with GitHub
Actions workflows for generating fresh DTLS-WebRTC handshakes
with the most recent version of popular browsers’. The workflow
pulls the newest stable version of Firefox and Chrome on Ubuntu
every day. We use Selenium to automate the browsers to create a
simple WebRTC datatunnel simultaneously as we run a packet cap-
ture. The captures are filtered for DTLS handshakes and committed
to the repository. This can be used for mimicking DTLS handshake
messages and as a dataset for further research (available in the
covertDTLS GitHub repository). The pipeline can keep the mimick-
ing functionality up-to-date with popular browsers (that usually
silently update “themselves”). Validation included comparing the
handshakes to manually generated ones, testing for consistency,
and using the fingerprint discovery tool to compare the automati-
cally generated handshakes. This public corpus of DTLS handshakes
will grow over time and facilitates studying the evolution of differ-
ent implementation as we do in section 4.1. A censor would have
access and the ability to do large scale collection of DTLS traffic, so
a publicly available dataset is valuable for researchers to keep up
with their adversaries.

The final and most central of our contributions is covertDTLS,
a DTLS Go module that extends the Pion DTLS library to offer
fingerprint-resistance features inspired by uTLS. To support this,
we contributed new capabilities to the Pion DTLS codebase, in-
cluding hookable handshake logic. These hooks allow external
modules to intercept and modify ClientHello, ServerHello and Cer-
tificateRequest messages immediately before transmission. This
preserves the Pion’s API while enabling external modules like ours
to extend handshake behavior without maintaining a forked version
of upstream, like uTLS does.

covertDTLS implements two main fingerprint-resistance tech-
niques for ClientHello messages (with other messages planned):

e Mimicry: This mode loads a target fingerprint as a hexstring
(e.g., from our generated browser handshakes) and recon-
structs the ClientHello message to match its fields, including
the cipher suite list, compression methods and extension
bytes. It aims to make the traffic indistinguishable from the
browser WebRTC implementations using passive field based
fingerprinting. We also expose the method to load arbitary
fingerpints to let users of our library bring their own DTLS
fingerprints they would like to mimic.

7https://github.com/theodorsm/covert-dtls/tree/main/.github/workflows

https://github.com/theodorsm/covert-dtls/tree/main/.github/workflows

e Randomization: In this mode, we modify the original Clien-
tHello with a combination of order permutation and picking
random values for cipher list and extensions, effectively gen-
erating unique messages that evade deterministic matching.

Our fingerprint discovery tool was also employed to validate
that the library did not produce any distinguishable fingerprints
when mimicking. We used snowbox® to capture traffic from regular
Snowflake and a modified version using covertDTLS, comparing the
traffic to the DTLS-WebRTC corpus from MacMillan et al. combined
with captures of newer browser versions. Using dfind, we found
distinguishing fingerprints for regular snowflake traffic, but not for
Snowflake using mimicking [19]. This suggest that our mimicking
technique is effective against a censor deploying allowlisting for
the DTLS stack of browsers.

We wanted to calculate the theoretical number of fingerprints our
randomization offered. Equation 1 is used for finding the amount of
possible permutations when randomizing the length of a list with
n elements.

P(n) = Z; (n'_l—'r), (1)

Pion supports 8 ciphers which we pick a random amount of and
shuffle. The number of possible values for our randomized ciphers
list are therefore:

Pciphers = P(8) = 109,600 ()

Our randomization mode only shuffles the order of extensions,
which we observed usually contained 7 extensions. We shuffle
and pick random values for the supported_groups, use_srtp and
signature_algorithms extensions with 3,4 and 7 possible values.
Additionally, we randomly pick one of 15 common values for the
APLN extension. The number of possible unique fingerprints for
randomized extensions are:

Pextensions = 7' X P(3) X P(4) X P(7) x 15
= 994, 218, 624, 000 ®)

We believe both Peiphers and Pextensions are sufficiently large to

resist blocklist fingerprinting.

4 Results

We analyse the key findings of our approach in this section. It
includes a review of the DTLS handshakes that were collected over
the period of one year for Chrome and Firefox releases. We also
provide an evaluation of our DTLS implementation in deployed
Snowflake proxies, using both mimicking and randomization, and
compare them against standard proxies.

4.1 DTLS fingerprint evolution of browsers

In this section we present the results of capturing DTLS handshakes
from a WebRTC application in Chrome and Firefox over a year
(April 2024 to April 2025). As discussed in Section 3, these hand-
shakes were generated daily based on the latest available versions
of the browsers.

The dataset contained 44 handshakes from Chrome version
124.0.6367.60 to 135.0.7049.84 and 30 handshakes from Firefox ver-
sion 125.0.1 to 137.0.1. Unfortunately, we lost the captures of about
two months in October and November of 2024, thus not having

8https://github.com/cohosh/snowbox

Proceedings on Privacy Enhancing Technologies YYYY(X)

captures for Chrome version 130 and Firefox version 132. With
this dataset, we were able to use dfind on the browser captures
in a chronological order to determine if there unique fingerprints
introduced between versions.

For the Firefox handshakes we found that until May 2024 there
was a constant fingerprint that identified the browser. However,
from version 127 released in May of 2024, DTLS 1.3 started being
used for WebRTC by default. As we did not notice this before
analysis, we only captured DTLS 1.3 handshakes for most of the year,
although gathering handshakes from the DTLS 1.2 implementation
in the same time period would have been useful. In the analyzed
data, the extension bytes are unique each time as they include the
key_share extension containing unique key_exchanges (containing
public cryptographic keys). Despite the use of DTLS 1.3, we did not
identify any use of ECH in Firefox, which would further increase
privacy, security and fingerprint-resistance. In the few DTLS 1.2
handshakes we generated, we discovered that the record_size_limit
extension was present in Firefox, which is not supported by Pion
and is a certain way of differentiating DTLS implementations.

DTLS 1.3 has been implemented in the boringSSL library, which
is used by Chrome. However, in this browser, it has not yet been
enabled by default.

Analyzing the Chrome handshakes we found that from version
129.0.6668.58 the order of the extension list is randomized and
thus produces a unique fingerprint each time. This makes DTLS
fingerprinting harder to do in Chrome by default. Before the ran-
domization of the extension list in mid-September 2024, we saw no
change in fingerprint for Chrome for a period of 5 months.

4.2 Snowflake measurements

This section presents measurements of Snowflake traffic. We begin
by introducing the metrics for the different types of proxies, as well
as the number of daily Snowflake users. Then we look at the traffic
captured while running distinct proxy configurations, each over
the span of 24 hours.

We used the statistics of Snowflake proxy types collected by the
brokers that is being used in the Tor Project’. These metrics are
according to the broker specification a count of the total number
of unique IP addresses of Snowflake proxies types that have been
polled!®. We assume that the count does not necessarily indicate
that they were used by a Snowflake client. This means that these
proxies were available for usage, but may not have been used to
send traffic to a Tor relay. We use the scripts by David Fifield for
generating graphs related to daily users of Snowflake in addition
to our own script for plotting unique IPs by type!l.

There are four different types of proxies available in the statis-
tics: badge, standalone, webextension and iptproxy. The first three
are types we introduced in the background section above. The ipt-
proxy!? is a pluggable transport (including Snowflake) proxy for
iOS and Android. The application seems to be a gomobile wrapper
for pluggable transports that are implemented in Go. Since gomobile

*https://metrics.torproject.org/collector/archive/snowflakes/
Ohttps://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-
/blob/main/doc/broker-spec.txt

Uhttps://gitlab.torproject.org/dcf/snowflake-graphs/
2https://github.com/tladesignz/IPtProxy

https://github.com/cohosh/snowbox
https://metrics.torproject.org/collector/archive/snowflakes/
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/blob/main/doc/broker-spec.txt
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/blob/main/doc/broker-spec.txt
https://gitlab.torproject.org/dcf/snowflake-graphs/
https://github.com/tladesignz/IPtProxy

Proceedings on Privacy Enhancing Technologies YYYY(X)

is used, we assume the Pion library is used for DTLS, not the native
implementation of the mobile platforms.

Daily Snowflake users

30,000 T
WAV M
|

WA o
20,000 ‘u\,/\',/vv\\
S~

1M
‘U N

u‘ %

10,000

Average simultaneous users

0
Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
2024 2024 2024 2024 2024 2024 2024 2024 2024 2025 2025 2025 2025

Figure 3: Daily Snowflake users (April 2024 to April 2025)

Theodor Signebgen Midtlien and David Palma

with randomization and Chrome!® with the Snowflake webexten-
sion'®. Each of the proxies were run continuously for 24 hours on
the same machine!” with a static IP (IPv4 and IPv6) and no NAT.
We expect restricted NATing to be more realistic for a proxy, but
we chose unrestricted NAT to more easily be able to be matched
with any client.

For all the deployments, we saw that only between 6 and 8 DTLS
ClientHello messages were not sent from the proxies. Most of those
originated from known Internet scanners. In total, only 5 hand-
shakes were completed that were not initiated by a ClientHello
from the proxy, but instead by the other peer. All of these hand-
shakes came from the same data center in the Netherlands. For the
webextension, handshakes were not completed when the proxy
received a ClientHello.

175000

150000

125000

Unique IPs by Type Over 12 Months

— badge
— iptproxy
—— standalone
— webext
cumulative

Type #CH | #SH | # HV | # CCS* | Failed
Baseline 3136 1466 | 1456 1458 12.5%
Mimicking 2055 961 921 922 18.2%
Randomization 1678 | 709 702 708 27.0%
Chrome webext. | 216 74 113 72 25.8%

Unique IPs

100000
75000
50000
25000

0

S o o o ® 3 o A > ONP u
1&“‘0 ,Lgmb‘“ ,L@“‘“ ,Lom“'g 101“'0 101“'0 ,@1“‘\' 101"“’ 1“1&\ ,L“ff“ ,Lgf)’“ 101”” .L@”'Q
Date

Figure 4: Unique proxies by type (April 2024 to April 2025)

Figure 4 show the total number of unique IP addresses per proxy
type. Assuming an average of around 175,000 proxies (cumulative)
over the past few months, with 100,000 attributed to iptproxy and
60,000 to webextensions, we can say that the distribution is 57%
for iptproxy and 35% for webextensions. This reveals that there
is only a small percentage (<8%) of active badge and standalone
proxies. It is important to note that the high observed number of
iptproxy proxies is partly due to the dynamic nature of mobile IP
addresses, which can artificially inflate the apparent availability of
these proxies.

In Figure 5 we see a drop of Snowflake users starting in November
2024. This has been discussed in the community as blocking in
Russia!® and is suspected to be due to blocking domain fronting
to phpmyadmin.net. Additionally, we see a drop and a subsequent
steady decline of users from Iran in late December 2024. This might
be due to Iran lifting their ban on WhatsApp and Google Play [3],
and therefore reducing the interest in Snowflake.

During testing of our DTLS library we observed that the
Snowflake proxy tends to become the DTLS client during hand-
shakes. To measure the stability and impact of covertDTLS ma-
nipulating ClientHello messages, we deployed four different con-
figurations of Snowflake proxies: a standalone proxy baseline!4,
standalone proxy using covertDTLS with mimicking (picking a new
fingerpint for each session), standalone proxy using covertDTLS

Bhttps://github.com/netdpeople/bbs/issues/422
14Commit ae5bd528211f07ca4be8582571b5a33f11fcf853

Table 1: Number of DTLS handshake messages and failure
rate of Snowflake proxies running for 24h. Asterisk indicates
message being sent from the proxy.

Table 1 shows the number of handshake messages and the esti-
mated failure rate of handshakes for each deployment. We assume
that a ChangeCipherSpec (CCS) message indicates a successful hand-
shake by starting an encrypted channel, and a HelloVerifyRequest
(HV) message triggers duplicate ClientHello (CH). For calculating
an estimated failure rate we used the following formula:

#CCS

Failure Rate = 1 —
#CH — #HV — #CH from scanners

The baseline proxy configuration exhibits the highest traffic and
is the most stable among the tested setups. However, the amount
of traffic may vary over time due do varying demand. The mimick-
ing option also demonstrates considerable stability, regarding the
amount of successful handshakes. On the other hand, randomiza-
tion appears to be error-prone, likely due to the cipher list offering
several ciphers that the server rejects. Interestingly, the Chrome
webextension generates significantly fewer DTLS sessions. This
may be attributed to the standalone proxy’s ability to utilize con-
currency in Go, allowing multiple sessions to run in parallel. The
reason behind the Chrome’s proxy instability remains unknown to
us.

5 Lessons learned

This section provides the key takeaways from combining the knowl-
edge gained during the implementation of our artifacts together
with the results discussed in the previous section.

The evolution of browsers’ fingerprints had no noticeable
effect on Snowflake’s number of daily users. Despite having
observed two significant changes in the DTLS fingerprints from
Chrome and Firefox during the last year, this was not reflected in
5Version 135.0.7049.95

16Version 0.9.3
7Ubuntu 24.04.2 LTS (GNU/Linux 6.8.0-57-generic x86_64) with 4 virtual cores.

https://github.com/net4people/bbs/issues/422

Proceedings on Privacy Enhancing Technologies YYYY(X)

Top 5 countries with the most Snowflake users by day
20,000 T T T
MAANTAL) :
g H‘/’m | ‘N\N'VV\\ ' country
g | H “ : \V\ N : Adoption of order randomization for .
» 15,000 ‘ | ! \/\\ > . DTLS extensions in Chrome ir
il S N . M-
2 H | | At M 3
© U H ey H . us
£ 10,000 | | : : i e g
> ' 1 oo — N\ o
1 Adoption of DTLS 1.3 in Firefox \ F . cn

E , . : |
n ! . 2
o] S . P!
@ 5000 | G | e
= T — N AaN
] \ - ”
> — 72
z : O

0 = s - - ! |] _

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

2024 2024 2024 2024 2024 2024

2024 2024 2025 2025 2025 2025

Figure 5: Average simultaneous users of Snowflake by country from April 2024 to April 2025

the collected statistics. If new browser fingerprints had a strong
effect on Snowflake usage, we would presumably see drops in the
number of users when these changes occurred. However, in the per
country metrics in included in Figure 5, this is not the case.

A prompt adoption of DTLS 1.3 is needed to keep up with
browsers. Firefox’s roll-out of DTLS 1.3 for WebRTC introduced
some challenges in mimicking current browser behavior. Chrome
seems to soon be ready to have DTLS 1.3 by default too. In addi-
tion, the ECH feature in DTLS 1.3 would prevent fingerprinting of
extensions lists by encryption. However, censors might be willing
to block DTLS 1.3 ECH'®. Except if browsers adopt ECH by default,
then the collateral damage from blocking ECH might be too high,
making it too costly to be blocked by a censor. Unfortunately, the
Pion WebRTC/DTLS stack focuses on DTLS 1.2 with no concrete
progress on the DTLS 1.3 implementation yet. We urge the commu-
nity to prioritize such an implementation, but understand it will
take time in a open-source community with no financial support
for maintainers to do the work.

We initially did not notice that DTLS 1.3 was adopted in Firefox,
and we replayed extensions data byte-for-byte. This naive replay-
ing would produce unique fingerprints for our library as session
values in the new extensions for DTLS 1.3 would be the same value
in every handshake. After this was discovered, we developed a
proof-of-concept of mimicking DTLS 1.3 features in covertDTLS.
We substituted the public keys in the key_share extension with
new keys, but had limited success in completing handshakes. This
highlights the need for a proper implementation of the DTLS 1.3
extensions rather than modifications such as updating public keys
without integrating them into the handshake logic. While waiting
for Pion to support DTLS 1.3, we revised our fingerprint generation
workflow to cap the maximum DTLS version at 1.2 for WebRTC.
This was achieved using the media.peerconnection.dtls.version.max
setting in Firefox.

Even with a sharp drop in the amount of proxies, it does
not seem to affect the number of Snowflake users. There was
alarge drop of webextension proxies in May 2024 (see Figure 4) due
new opt-in consent required by the Mozilla’s Add-on store!®. Even
with the large decline of proxies, we see no drop in users in the

Bhttps://gitlab.torproject.org/tpo/anti- censorship/censorship-analysis/-
/issues/40057#note_3184292
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake-
webext/-/issues/97

same period in Figure 3. Thus we believe there is plentiful amount
of proxies to fulfill the needs of users.

Snowflake proxies produce the ClientHello messages
during the DTLS handshakes. In previous datasets (MacMillan
et al.[18]) and earlier fingerprinting attempts, it was implied that
the CH was consistently generated using the Pion library by the
Snowflake client. However, during testing we observed that it is ac-
tually the proxy that assumes the client role in the DTLS handshake,
and the reason for us deploying the fingerprint-resistant library at
proxies rather than at clients. This behavior is dictated by the SDP
protocol. According to RFC 5763, the SDP offer must include the
setup:actpass attribute, and it is recommended that the SDP answer
uses the setup:active attribute [31]. The peer designated as active is
responsible for initiating the DTLS handshake by sending the CH.
Since the Snowflake client is implemented to always send the SDP
offer, the proxy—in responding with the SDP answer—becomes
the active peer and thus initiates the handshake. If covertDTLS
is adopted by Snowflake, we should encourage operators of stan-
dalone proxies, or iptproxy, to configure their deployments with
appropriate randomization or fingerprint-mimicking techniques.

Browser extensions make Snowflake resistant to Clien-
tHello fingerprinting. As shown in Figure 4, standalone proxies
make up only a small fraction of the total proxy pool with iptproxy
and webextensions being abundant. Maintaining a large pool of
webextension proxies enhances Snowflake’s resilience against fin-
gerprinting as the browser DTLS stack is used for CH messages,
although the failure rate is surprisingly high for Chrome.

Standalone proxies can serve more Snowflake clients per
volunteer than webextensions. Assuming each CCS message
from the proxy indicates a successful DTLS handshake for a new
client, we observe that a standalone proxy can serve at least 10
times more clients compared to those based on webextensions. This
extra capacity of the standalone proxies to serve more clients is
most likely due to the concurrency offered by goroutines. Over the
past six months, there have been approximately 4,500 standalone
proxies available daily. If each of these proxies can serve 10 times the
number of clients, they could collectively handle nearly the same
volume as webextensions, which average around 60,000 clients. If
we further assume that iptproxy can serve only as many clients
as the Chrome extension—an intentionally conservative estimate,
since gomobile may leverage goroutines similarly to standalone

https://gitlab.torproject.org/tpo/anti-censorship/censorship-analysis/-/issues/40057#note_3184292
https://gitlab.torproject.org/tpo/anti-censorship/censorship-analysis/-/issues/40057#note_3184292
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake-webext/-/issues/97
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake-webext/-/issues/97

Proceedings on Privacy Enhancing Technologies YYYY(X)

proxies—we estimate that approximately 28% of the traffic could
be handled by webextensions, with the remaining 72% handled
through the Pion DTLS stack.

We need metrics on which types of proxies are actually
being matched and successfully used by clients. Such metrics
would enable more effective troubleshooting of potential finger-
printing issues. For example, if we observe a decline in successful
connections for both iptproxy and standalone proxies, while we-
bextension proxies remain unaffected, we could reasonably infer
that fingerprinting of the Pion WebRTC stack may have occurred.

covertDTLS is stable when mimicking DTLS 1.2 handshakes,
while randomization and Chrome webextensions tends to
be less stable. As shown in Table 1, the failure rate for mimicking
is within the same order of magnitude as the baseline, while still
supporting a high number of clients. This suggests that mimick-
ing DTLS 1.2 has similar stability as baseline and is not currently
subject to blocking. We were even successful in mimicking the
record_size_limit extension added by Firefox and not used by Pion.

However, mimicking Chrome has some caveats. Chrome’s finger-
print is evolving at every capture of a new version due to extension
order randomization. While this randomization improves Chrome’s
resistance to fingerprinting by forcing censors to rely on more ad-
vanced DPI, it also makes accurate mimicking more difficult. The
collected data shows that Chrome typically includes six extensions,
leading to 6! = 720 possible permutations — each representing a
unique CH fingerprint. Just mimicking a single capture with one
of the possible permutations would be a fingerprint that could be
blocked with little collateral damage. To reduce the possibility of
being consistently blocked by such a fingerprint, we also support
picking a random fingerprint to mimic from all the browser versions.
In a future version of covertDTLS we are considering to implement
parsing and shuffling of extensions to mimic this Chrome behavior.

Our library also incorporates randomization, not only of the
order of extensions like Chrome, but also in the number of options
selected in certain extensions, the cipher suites advertised, and
the ALPN values. We estimate that this results in approximately
994, 218, 624, 000 unique permutations vs. 720 in Chrome, signifi-
cantly lowering the likelihood of generating the same fingerprint
repeatedly and thus being targeted by fingerprint blocklisting.

Randomization also seems to correlate with a higher failure rate
for both our library and Chrome webextensions. We expect our
library to announce short cipher lists and extensions that could be
rejected by a server, explaining the failures. That said, we still do
not fully understand why Chrome webextensions exhibit a higher
failure rate than the baseline standalone proxy, as Chrome do not
remove options like our library. Even the failure rate for the stan-
dalone proxy is unexpectedly high, and we suggest further inves-
tigation into this and webextension stability. We argue that the
failure rate of randomization is still acceptable as it is on par with
the stability of Chrome webextensions already widely deployed,
while offering high resistance against blocklisting. It seems unlikely
that the high failure rates across all proxies tested are due to fin-
gerprint blocking, as the CH message would likely be dropped and
we would not receive the corresponding SH like we do. Keeping
the handshake alive until the final CCS and then possibly modify-
ing it to fail the handshake is more expensive to do, as it requires
handshake state management by a censor.

Theodor Signebgen Midtlien and David Palma

6 Ethics

The pursuit of anonymity and censorship circumvention through
technologies such as Snowflake raises significant ethical consid-
erations. While these tools are designed and intended to promote
free access to information and protect users from oppressive tactics,
they also have the potential to be put to wrong use. The anonymity
provided by such technologies can be exploited to commit crimes,
including cyber-attacks and other illicit activities, which we do not
endorse. Researchers and developers must ensure that their work
is aligned with ethical standards and legal frameworks.

During this project, traffic was collected from deployed Snowflake
proxies over multiple days. The collected traffic was filtered to iso-
late DTLS handshakes, while discarding the data traffic. This paper
presents an analysis based on the filtered captures. To protect the
privacy of the users who connected to our proxies, the dataset will
not be released and subsequently deleted with the release of this pa-
per. This decision underscores our commitment to ethical research
practices and the safeguarding the privacy of individuals.

7 Conclusion

This work presented a set of artifacts aimed at reducing the fin-
gerprintability of DTLS traffic in Snowflake. We introduced covert-
DTLS, a fingerprint-resistant Go library extending the Pion DTLS
library, enabling both mimicking browser implementations and
randomizing DTLS handshake messages. Supporting tools include
a fingerprint discovery tool and a pipeline for collecting up-to-date
DTLS-WebRTC handshakes from Firefox and Chrome.

Our evaluation showed that mimicking the ClientHello mes-
sages of browsers yields stable performance compared to baseline
Snowflake proxies, while randomization of ClientHello messages
significantly expands the space of potential fingerprints, though at
the cost of increased handshake failures. We observed that proxies,
not clients, typically initiate the DTLS handshake in Snowflake, clar-
ifying where fingerprint-resistance mechanisms should be applied.
Despite changes in browsers DTLS fingerprints and proxy availabil-
ity, Snowflake usage remained stable, suggesting resilience to evolv-
ing protocol behavior. Those changes included Firefox adopting
DTLS 1.3 by default and Chrome randomizing its list of extensions
list in ClientHello messages.

We also emphasize the importance of preparing for broader adop-
tion of DTLS 1.3. As browsers increasingly migrate to this version
by default, Snowflake must adapt accordingly to maintain effective-
ness. DTLS 1.3 introduces new extension behaviors that challenge
our mimicry approach and features like ECH, which would make
fingerprinting of extensions obsolete. Meanwhile we wait for Pion
to support DTLS 1.3, the current version of covertDTLS is useful li-
brary to provide fingerprint-resistance in the environment of DTLS
1.2.

Our obtained results demonstrate that the proposed modifica-
tions to Snowflake reduced the distinguishability of DTLS traffic,
thereby enhancing its capability to bypass censorship. This ap-
proach represents a step forward in the ongoing effort to provide
access to a free and open internet in regions with heavy censorship.
With our modifications, censors might look towards more sophis-
ticated DPI, traffic shape analysis or other parts of the WebRTC
stack to find fingerprints of Snowflake.

Acknowledgments

We would like to thank the anti-censorship team at the Tor Project
including Cecylia Bocovich, David Fifield, meskio, onyinyang and
shelikhoo for suggestions, discussion ideas and helping with test-
ing. Furthermore, we thank Sean DuBois, Atsushi Watanabe and
Daenney at Pion for reviewing and merging our code contributions.
Finally, we thank Afonso Vilalonga for notifying us of the new
DTLS 1.3 extensions in Firefox.

References
[1] 2022. IRC Tip about Signature used to block Snowflake in Russia, 2022-May-16

8

[11
[12
[13

[14

[15

[16

[17

[18

]

]

]

]

(#40030) - Issues - The Tor Project / Anti -censorship / censorship-analysis -
GitLab. https://gitlab.torproject.org/tpo/anti-censorship/censorship-analysis/-
/issues/40030

2023. Apply Snowflake Remove HelloVerify Countermeasure. https://gitlab.
torproject.org/tpo/applications/tor-browser-build/-/merge_requests/637

2024. Iran lifts ban on WhatsApp and Google Play, state media says. Reuters (Dec.
2024). https://www.reuters.com/technology/iran-lifts-ban-whatsapp-google-
play-state-media-says-2024-12-24/

Alice, Bob, Carol, Jan Beznazwy, and Amir Houmansadr. 2020. How China
Detects and Blocks Shadowsocks. In Proceedings of the ACM Internet Measurement
Conference (IMC °20). Association for Computing Machinery, New York, NY, USA,
111-124. https://doi.org/10.1145/3419394.3423644

Harald T. Alvestrand. 2021. Overview: Real-Time Protocols for Browser-Based
Applications. Request for Comments RFC 8825. Internet Engineering Task Force.
https://doi.org/10.17487/RFC8825 Num Pages: 17.

Ali C. Begen, Paul Kyzivat, Colin Perkins, and Mark J. Handley. 2021. SDP: Session
Description Protocol. Request for Comments RFC 8866. Internet Engineering Task
Force. https://doi.org/10.17487/RFC8866 Num Pages: 57.

Cecylia Bocovich, Arlo Breault, David Fifield, Serene, and Xiaokang Wang. 2024.
Snowflake, a censorship circumvention system using temporary WebRTC prox-
ies. (2024). https://www.usenix.org/conference/usenixsecurity24/presentation/
bocovich

Jungiang Chen, Guang Cheng, and Hantao Mei. 2023. F-ACCUMUL: A Protocol
Fingerprint and Accumulative Payload Length Sample-Based Tor-Snowflake
Traffic-Identifying Framework. Applied Sciences 13, 1 (Jan. 2023), 622. https:
//doi.org/10.3390/app13010622 Number: 1 Publisher: Multidisciplinary Digital
Publishing Institute.

Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver, and
Vern Paxson. 2015. Examining How the Great Firewall Discovers Hidden Cir-
cumvention Servers. In Proceedings of the 2015 Internet Measurement Conference.
445-458. https://doi.org/10.1145/2815675.2815690

Nurullah Erinola, Marcel Maehren, Robert Merget, Juraj Somorovsky, and Jorg
Schwenk. 2023. Exploring the Unknown DTLS Universe: Analysis of the DTLS
Server Ecosystem on the Internet. 32nd USENIX Security Symposium (USENIX
Security 23) (2023). https://www.usenix.org/conference/usenixsecurity23/
presentation/erinola

David Fifield. 2020. Turbo Tunnel, a good way to design censorship circumvention
protocols. https://www.usenix.org/conference/foci20/presentation/fifield
David Fifield and Mia Gil Epner. 2016. Fingerprintability of WebRTC. https:
//doi.org/10.48550/arXiv.1605.08805 arXiv:1605.08805 [cs].

David Fifield. 2017. Threat modeling and circumvention of Internet censorship.
PhD dissertation. University of California, Berkeley, Berkeley, CA.

Sergey Frolov and Eric Wustrow. 2019. The use of TLS in Censorship Circum-
vention. In Proceedings 2019 Network and Distributed System Security Symposium.
Internet Society, San Diego, CA. https://doi.org/10.14722/ndss.2019.23511
Jordan Holland, Paul Schmitt, Prateek Mittal, and Nick Feamster. 2022. To-
wards Reproducible Network Traffic Analysis. http://arxiv.org/abs/2203.12410
arXiv:2203.12410 [cs].

A. Houmansadr, C. Brubaker, and V. Shmatikov. 2013. The Parrot Is Dead: Observ-
ing Unobservable Network Communications. In 2013 IEEE Symposium on Security
and Privacy. IEEE, Berkeley, CA, 65-79. https://doi.org/10.1109/SP.2013.14

Ari Kerdanen, Christer Holmberg, and Jonathan Rosenberg. 2018. Interactive
Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal. Request for Comments RFC 8445. Internet Engineering Task Force.
https://doi.org/10.17487/RFC8445 Num Pages: 100.

Kyle MacMillan, Jordan Holland, and Prateek Mittal. 2020. Evaluating Snowflake
as an Indistinguishable Censorship Circumvention Tool. http://arxiv.org/abs/
2008.03254 arXiv:2008.03254 [cs].

[19

[20

[21

[22]

~
&

[24

[25

[28

[29]

[30

[31

[32

(33]

&
=)

[35

[36

™
=

Proceedings on Privacy Enhancing Technologies YYYY(X)

Theodor Signebgen Midtlien. 2024. Reducing distinguishability of DTLS for usage
in Snowflake. Master’s thesis. NTNU. https://ntnuopen.ntnu.no/ntnu-xmlui/
handle/11250/3159369

United Nations. 1948. Universal Declaration of Human Rights. https://www.

un.org/en/about-us/universal-declaration-of-human-rights Publisher: United
Nations.

Marc Petit-Huguenin, Gonzalo Salgueiro, Jonathan Rosenberg, Dan Wing, Rohan
Mahy, and Philip Matthews. 2020. Session Traversal Utilities for NAT (STUN).
Request for Comments RFC 8489. Internet Engineering Task Force. https://doi.
org/10.17487/RFC8489 Num Pages: 67.

Ram Sundara Raman, Adrian Stoll, Jakub Dalek, Reethika Ramesh, Will Scott,
and Roya Ensafi. 2020. Measuring the Deployment of Network Censorship Filters
at Global Scale. In Proceedings 2020 Network and Distributed System Security
Symposium. Internet Society, San Diego, CA. https://doi.org/10.14722/ndss.2020.
23099

Reethika Ramesh, Ram Sundara Raman, Apurva Virkud, Alexandra Dirksen,
Armin Huremagic, David Fifield, Dirk Rodenburg, Rod Hynes, Doug Madory,
and Roya Ensafi. 2023. Network Responses to Russia’s Invasion of Ukraine
in 2022: A Cautionary Tale for Internet Freedom. 32nd USENIX Security
Symposium (USENIX Security 23) (2023). https://www.usenix.org/conference/
usenixsecurity23/presentation/ramesh-network-responses

Tirumaleswar Reddy.K, Alan Johnston, Philip Matthews, and Jonathan Rosenberg.
2020. Traversal Using Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN). Request for Comments RFC 8656. Internet
Engineering Task Force. https://doi.org/10.17487/RFC8656 Num Pages: 79.
Eric Rescorla and Nagena Modadugu. 2012. Datagram Transport Layer Security
Version 1.2. Request for Comments RFC 6347. Internet Engineering Task Force.
https://doi.org/10.17487/RFC6347 Num Pages: 32.

Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. 2025. TLS
Encrypted Client Hello. Internet Draft draft-ietf-tls-esni-25. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/draft-ietf-tls-esni-25

Eric Rescorla, Hannes Tschofenig, and Nagena Modadugu. 2022. The Datagram
Transport Layer Security (DTLS) Protocol Version 1.3. Request for Comments RFC
9147. Internet Engineering Task Force. https://doi.org/10.17487/RFC9147 Num
Pages: 61.

Guogqiang Shu and David Lee. 2011. A Formal Methodology for Network Protocol
Fingerprinting. Parallel and Distributed Systems, IEEE Transactions on 22 (Dec.
2011), 1813-1825. https://doi.org/10.1109/TPDS.2011.26

Ram Sundara Raman, Prerana Shenoy, Katharina Kohls, and Roya Ensafi. 2020.
Censored Planet: An Internet-wide, Longitudinal Censorship Observatory. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Se-
curity. ACM, Virtual Event USA, 49-66. https://doi.org/10.1145/3372297.3417883
Michael Carl Tschantz, Sadia Afroz, Name Withheld On Request, and Vern Paxson.
2016. SoK: Towards Grounding Censorship Circumvention in Empiricism. In
2016 IEEE Symposium on Security and Privacy (SP). IEEE, San Jose, CA, USA,
914-933. https://doi.org/10.1109/SP.2016.59

Hannes Tschofenig, Eric Rescorla, and Jason Fischl. 2010. Framework for Es-
tablishing a Secure Real-time Transport Protocol (SRTP) Security Context Using
Datagram Transport Layer Security (DTLS). Request for Comments RFC 5763.
Internet Engineering Task Force. https://doi.org/10.17487/RFC5763 Num Pages:
37.

Vasilis Ververis, Lucas Lasota, Tatiana Ermakova, and Benjamin Fabian. 2023.
Website blocking in the European Union: Network interference from the per-
spective of Open Internet. Policy & Internet 16 (Sept. 2023). https://doi.org/10.
1002/poi3.367

Ryan Wails, George Arnold Sullivan, Micah Sherr, and Rob Jansen. 2024. On
Precisely Detecting Censorship Circumvention in Real- World Networks. Network
and Distributed System Security Symposium (NDSS) (2024).

Hongxin Wang, Baojiang Cui, Wenchuan Yang, Jia Cui, Li Su, and Lingling
Sun. 2022. An Automated Vulnerability Detection Method for the 5G RRC
Protocol Based on Fuzzing. In 2022 4th International Conference on Advances in
Computer Technology, Information Science and Communications (CTISC). 1-7.
https://doi.org/10.1109/CTISC54888.2022.9849690

Yuying Wang, Guilong Yang, Dawei Xu, Cheng Dai, Tianxin Chen, and Yunfan
Yang. 2024. Snowflake Anonymous Network Traffic Identification. In Proceedings
of the 13th International Conference on Computer Engineering and Networks,
Yonghong Zhang, Lianyong Qi, Qi Liu, Guanggiang Yin, and Xiaodong Liu (Eds.).
Vol. 1127. Springer Nature Singapore, Singapore, 402-412. https://doi.org/10.
1007/978-981-99-9247-8_40 Series Title: Lecture Notes in Electrical Engineering.
Mingshi Wu, Jackson Sippe, and Danesh Sivakumar. 2023. How the Great Firewall
of China Detects and Blocks Fully Encrypted Trafc. (2023).

Yibo Xie, Gaopeng Gou, Gang Xiong, Zhen Li, and Mingxin Cui. 2023. Covertness
Analysis of Snowflake Proxy Request. In 2023 26th International Conference on
Computer Supported Cooperative Work in Design (CSCWD). IEEE, Rio de Janeiro,
Brazil, 1802-1807. https://doi.org/10.1109/CSCWD57460.2023.10152736

https://gitlab.torproject.org/tpo/anti-censorship/censorship-analysis/-/issues/40030
https://gitlab.torproject.org/tpo/anti-censorship/censorship-analysis/-/issues/40030
https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge_requests/637
https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge_requests/637
https://www.reuters.com/technology/iran-lifts-ban-whatsapp-google-play-state-media-says-2024-12-24/
https://www.reuters.com/technology/iran-lifts-ban-whatsapp-google-play-state-media-says-2024-12-24/
https://doi.org/10.1145/3419394.3423644
https://doi.org/10.17487/RFC8825
https://doi.org/10.17487/RFC8866
https://www.usenix.org/conference/usenixsecurity24/presentation/bocovich
https://www.usenix.org/conference/usenixsecurity24/presentation/bocovich
https://doi.org/10.3390/app13010622
https://doi.org/10.3390/app13010622
https://doi.org/10.1145/2815675.2815690
https://www.usenix.org/conference/usenixsecurity23/presentation/erinola
https://www.usenix.org/conference/usenixsecurity23/presentation/erinola
https://www.usenix.org/conference/foci20/presentation/fifield
https://doi.org/10.48550/arXiv.1605.08805
https://doi.org/10.48550/arXiv.1605.08805
https://doi.org/10.14722/ndss.2019.23511
http://arxiv.org/abs/2203.12410
https://doi.org/10.1109/SP.2013.14
https://doi.org/10.17487/RFC8445
http://arxiv.org/abs/2008.03254
http://arxiv.org/abs/2008.03254
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3159369
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3159369
https://www.un.org/en/about-us/universal-declaration-of-human-rights
https://www.un.org/en/about-us/universal-declaration-of-human-rights
https://doi.org/10.17487/RFC8489
https://doi.org/10.17487/RFC8489
https://doi.org/10.14722/ndss.2020.23099
https://doi.org/10.14722/ndss.2020.23099
https://www.usenix.org/conference/usenixsecurity23/presentation/ramesh-network-responses
https://www.usenix.org/conference/usenixsecurity23/presentation/ramesh-network-responses
https://doi.org/10.17487/RFC8656
https://doi.org/10.17487/RFC6347
https://datatracker.ietf.org/doc/draft-ietf-tls-esni-25
https://doi.org/10.17487/RFC9147
https://doi.org/10.1109/TPDS.2011.26
https://doi.org/10.1145/3372297.3417883
https://doi.org/10.1109/SP.2016.59
https://doi.org/10.17487/RFC5763
https://doi.org/10.1002/poi3.367
https://doi.org/10.1002/poi3.367
https://doi.org/10.1109/CTISC54888.2022.9849690
https://doi.org/10.1007/978-981-99-9247-8_40
https://doi.org/10.1007/978-981-99-9247-8_40
https://doi.org/10.1109/CSCWD57460.2023.10152736

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Snowflake
	2.2 DTLS
	2.3 Fingerprinting
	2.4 Fingerprint resistance
	2.5 Capabilities of censors

	3 Fingerprinting-resistant Snowflake
	4 Results
	4.1 DTLS fingerprint evolution of browsers
	4.2 Snowflake measurements

	5 Lessons learned
	6 Ethics
	7 Conclusion
	Acknowledgments
	References

