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Fingerprint-resistant DTLS for usage in Snowflake
Theodor Signebøen Midtlien David Palma
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Trondheim, Norway

Abstract
Internet censorship circumvention requires continuous effort and
attention in order to achieve its goals. This paper aims at making
the Pion DTLS library used in Snowflake less prone to fingerprint-
ing. We developed a tool for analyzing and passively identifying
field-based fingerprints of DTLS, validated with a dataset contain-
ing known fingerprints. Our findings revealed that the extensions
field is particularly vulnerable to identification. To address this,
we propose and implement a Go library inspired by uTLS, which
extends Pion DTLS with handshake hooking to offer mimicry and
randomization features. In addition, we created a continuous de-
livery pipeline to generate fresh DTLS-WebRTC handshakes based
on popular browsers, allowing monitoring of changes and ensur-
ing that mimicking remains up-to-date. Our results indicate that
mimicking and randomization are effective countermeasures, each
with its caveats. We further analyse the evolution of the collected
DTLS fingerprints over a year, and their impact on Snowflake’s dis-
tinguishability. To fully understand the impact of our proposed so-
lution, we also deployed standard Snowflake proxies and improved
ones, using our fingerprint-resistant DTLS library, and report our
findings. Our observations suggest that the prompt adoption of
DTLS 1.3 is necessary to keep pace with browser updates, and
our fingerprint-resistant library demonstrated stability when mim-
icking DTLS 1.2 handshakes, but less so with the randomization
approach. These obtained results suggest that our modifications
to Snowflake effectively reduce the fingerprintability of DTLS traf-
fic, enhancing its capability to bypass censorship. However, we
also argue that continuous monitoring and prompt adaptation to
evolving Internet protocols, and applications are essential for the
anti-censorship community.

Keywords
Censorship Circumvention, DTLS, Network Protocol Fingerprint-
ing, Snowflake

1 Introduction
The Internet facilitates global sharing of information and ideas,
such freedom of opinion and expression are protected by Article
19 of the United Nations Universal Declaration of Human Rights
(UDHR) [19]. However, there are diverse attempts by censors (e.g.
governments, institutions, and service providers) to violate these
rights by regulating, monitoring, or, in some cases, by entirely
stifling access to the open Internet [21, 22, 28]. This phenomenon,
known broadly as Internet censorship, represents both a technical

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
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challenge and a significant global societal concern, impacting free
speech and human rights at large. Internet access is even being
censored in regions often considered “free”, such as the European
Union (EU) [27, 30].

One Internet censorship circumvention system that is commonly
used in the Tor Browser and Orbot is Snowflake1[7]. Operating
on the principle of volunteerism and decentralization, Snowflake
employs ephemeral proxies run by volunteers using Web Real-
Time Communication (WebRTC) [5] peer-to-peer connections. So
far, censors have not shown willingness to block WebRTC as a
protocol [7], which allows Snowflake to blend in with the long tail
of other WebRTC traffic.

No censorship circumvention system is perfect, and Snowflake
has been successfully blocked at multiple occasions [7]. An exam-
ple of this is Russia blocking Snowflake in May of 2022 [1]. This
was accomplished by fingerprinting unique ClientHello messages
associated to Snowflake using the Datagram Transport Layer Se-
curity (DTLS) protocol, which is used by WebRTC. This method
has previously been discussed in literature and was a known at-
tack vector [18]. Reactive measures have been deployed by the Tor
project to remove the distinguishing ClientHello fingerprint in the
DTLS implementation by Pion2, but these were not integrated in
Snowflake and other weaknesses may still exist [2].

Transport Layer Security (TLS), being a similar protocol to DTLS,
can provide some insights into fingerprint resistance, as it has
been more widely studied for use in censorship circumvention.
Frolov andWustrow [14] foundmultiple ways of fingerprinting TLS,
including the ClientHello method used to block DTLS in Snowflake.
To handle this problem, the researchers developed a library called
uTLS3 that aims to protect against fingerprinting. However, no
such library exists for DTLS, which concerns the team behind and
actively developing Snowflake.

This paper extends our previous work4 on limiting the finger-
printabilty of DTLS in Snowflake, which is presented in Section 3.
We developed a tool for analyzing and passively finding field-based
fingerprints of DTLS. This tool was validated using a data set with
known fingerprints, and found that the extensions field was espe-
cially vulnerable for identification. To combat such fingerprints
we propose and implement a Go library inspired by uTLS. The
module extends the Pion DTLS library with handshake hooking to
offer mimicry and randomization features. To ensure that mimick-
ing remains up-to-date, we developed a novel continuous delivery
workflow for generating fresh DTLS-WebRTC handshakes based
on popular browsers. We concluded that mimicking and random-
ization are effective countermeasures against passive, stateless, and
field-based fingerprinting.

1https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake
2https://github.com/pion
3https://github.com/refraction-networking/utls
4Reference removed to anonymize authors. Additionally, all software shall be publised
as open-source, but links are removed to ensure anonymity during review
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We further explore howDTLS fingerprints from popular browsers
(Firefox and Chrome) changed over a year and how this affects the
distinguishability of Snowflake. We deployed standard Snowflake
proxies and improved ones using our fingerprint-resistant DTLS
library. Traffic from these deployments is analyzed and we present
lessons learned, which may contribute to finding new areas of
research on Internet anti-censorship.

2 Background and related work
2.1 Snowflake

Figure 1: Architecture of Snowflake

The Snowflake circumvention system comprises three primary
participants: the client, proxies, and a broker. Its architecture, illus-
trated by Figure 1, shows the essential components and commu-
nication pathways. The client is an individual utilizing Snowflake
within a region where a censor blocks traffic to specific destinations
(IP addresses). To circumvent these IP blockages, the client engages
a broker to identify an available proxy in a process known as ren-
dezvous. The broker matches the client with an idle proxy, which
allows routing the client’s traffic through an encrypted WebRTC
data channel. Proxies are managed by volunteers with unblocked
IPs, granting access to the open internet.

There are three main types of proxies: webextensions, badge and
standalone. The webextension is a browser extension that volun-
teers can run that opens a WebRTC connection in the background
using the browser networking stack. The badge can be embedded in
websites and visitors can run a Snowflake proxy using the browser
networking stack as long as the tab is open. Finally, the standalone
version is a Go binary that can be run on desktop or server from
the command line. This type uses the same Pion WebRTC/DTLS
networking stack as the Snowflake client.

To initiate contact with the broker, the client must use an in-
direct, unblockable channel to bootstrap into Snowflake. Three
methods are supported for rendezvous: domain fronting5, Accel-
erated Mobile Pages cache and Simple Queue Service [7]. Once
the indirect channel is established, the client communicates with
the broker, which pairs the client with an idle proxy from its pool,
based on self-reported Network Address Translation (NAT) types.
The broker then facilitates the exchange of Session Description
Protocol (SDP) [6] offers and answers between the client and proxy,
as specified by WebRTC.

5It is worth noting that this approach requires anti-censorship teams to constantly
update the content providers they use for domain fronting, as many of the providers
are stopping their support of the service

Following rendezvous, the client and proxy must navigate NAT
traversal during the connection establishment phase. Devices be-
hind NATs and firewalls typically only allow outgoing connections
initiated by the client. To address this challenge, WebRTC employs
the Interactive Connectivity Establishment (ICE) [17] procedure,
which enables direct communication channels through NATs and
firewalls. The ability to establish a connection between a client
and proxy during the ICE procedure depends on using Session
Traversal Utilities for NAT (STUN) [20] and servers supporting Tra-
versal Using Relays around NAT (TURN) [23]. Upon successfully
establishing a connection, the client and proxy can exchange traffic.

The final phase of Snowflake involves data transfer, which in-
cludes a persistent session layer and an ephemeral data chan-
nel. A persistent session is maintained using Turbo Tunnel [11],
which adds sequence numbers and acknowledgments to the data
exchanged between the client and a bridge. This ensures that if the
current proxy becomes unavailable, the data will be retransmitted
through a new proxy. For the ephemeral channel, WebRTC data
channels are used, facilitating the transmission of encrypted and
integrity-protected data via DTLS.

2.2 DTLS
DTLS is a protocol designed by the Internet Engineering Task Force
(IETF) to provide secure communication for datagram-based ap-
plications, similar to how Transport Layer Security (TLS) secures
applications over TCP. DTLS comprises two primary components:
the handshake and the record layer. The DTLS handshake is respon-
sible for negotiating cryptographic algorithms and keys between
the client and server. Once these parameters are established, the
DTLS record layer takes over, encapsulating the data from the upper
layers into encrypted records that are transmitted over UDP.

DTLS has undergone several iterations to enhance security and
performance. DTLS 1.2 built upon TLS 1.2 was introduced in RFC
6347 [24] in 2012 and is still the most common version deployed
on the internet [10].

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Free and Open Communications on the Internet 2025(2

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

)

Client Server
------ ------
ClientHello 1 ---->

<---- 2 HelloVerifyRequest*
ClientHello* 3 ---->

ServerHello
Certificate*

ServerKeyExchange*
CertificateRequest*

<---- 4 ServerHelloDone

Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished 5 ---->

[ChangeCipherSpec]
<---- 6 Finished

Figure 2: Messages for the full DTLS 1.2 handshake. Optional
messages are indicated with an asterisk.

The most recent version is DTLS 1.3, based on TLS 1.3. It features
a streamlined handshake that reduces the number of round-trips,
lowering latency. This version also provides default forward secrecy
and elimination of outdated cryptographic algorithms. DTLS 1.3
became a standard in 2022 with RFC 9147 [25], but has seen little
adoption.

Figure 2 shows the full DTLS 1.2 handshake. This process in-
volves multiple “flights” of messages exchanged between the two
parties to negotiate security parameters, authenticate each other,
and establish shared secrets for encrypted communication.

The handshake begins with the client sending a ClientHello mes-
sage to the server, containing the protocol version, a randomly
generated number (ClientRandom), SessionID, supported cipher
suites, compression methods, and any relevant extensions such
as Application-Layer Protocol Negotiation (ALPN) and Supported-
Groups.

To prevent denial-of-service attacks from spoofed IP addresses,
the server may respond with a HelloVerifyRequest message. It in-
cludes a stateless cookie created as a HMAC of a secret, the client
parameters and IP. The client must echo back cookie in a subse-
quent ClientHello message. This step is optional but recommended
to verify the client’s reachability and mitigate resource exhaustion
risks.

Upon receiving the ClientHello, the server responds with a Server-
Hello and optional messages such as Certificate, ServerKeyExchange
andCertificateRequest. The ServerHellomessage includes the server’s
chosen protocol version, a randomly generated number (ServerRan-
dom), SessionID, chosen cipher suite, compression method, and any
relevant extensions. The ServerHelloDonemessage indicates the end
of the server’s initial handshake messages.

The handshake concludes with sending the ChangeCipherSpec
and Finished messages. The ChangeCipherSpec message signifies a
switch to the newly negotiated cipher suite and keys. The Finished
message is a hash of the entire handshake encrypted with the new

session keys by the server. The client and server can now send
encrypted records to each other.

To provide extra flexibility, DTLS utilizes extensions in the Clien-
tHello and ServerHello messages. The extension field can be of
variable size, with a maximum size of 2 bytes, allowing different
amounts of extensions to be in any order. This is a way to nego-
tiate additional features without altering the core protocol. These
extensions are specified in various RFCs, often for both TLS and
DTLS.

The Encrypted Client Hello (ECH) is an extension currently in
draft (draft-ietf-tls-esni-246) for TLS/DTLS that aims to enhance
privacy and security by encrypting the ClientHello message. This
will protect privacy-sensitive information in other extensions.

2.3 Fingerprinting
Network protocol fingerprinting is the process of identifying and
classifying network protocols based on their unique characteris-
tics or patterns, similar to how fingerprints uniquely identify indi-
viduals. These protocol-specific patterns enable the detection and
analysis of the communication protocols used within a network.

Guoqiang Shu and David Lee introduced a formal methodology
for network protocol fingerprinting, outlining a taxonomy that
addresses the challenges of fingerprinting through three main com-
ponents: active and passive experiments, fingerprint discovery, and
fingerprint matching [26]. Active fingerprinting involves engaging
with the target system by sending specific probes or queries and an-
alyzing the responses to gather information about the protocol and
its implementation. While this method can be intrusive and may
cause some disruption to the target system, it is highly effective
in extracting detailed protocol information. Passive fingerprinting
relies on observing and analyzing network traffic patterns without
direct interaction with the target system. This approach is less intru-
sive and does not risk disrupting the target system. However, it may
be less accurate than active fingerprinting. Passive fingerprinting
utilizes deep packet inspection (DPI) to examine protocol fields or
analyze statistical traffic patterns.

Fingerprint discovery involves systematically uncovering a fin-
gerprint for an unknown implementation. This process gathers
comprehensive information to create a unique identifier for the
protocol. Fingerprint matching is the process of comparing col-
lected fingerprints to determine if they originate from the same
protocol implementation. This can be done through exact one-to-
one mapping or probabilistically, assessing the likelihood that two
fingerprints correspond to the same implementation.

Fifield and Epner [12] are the first publicly to explore ways of fin-
gerprinting parts of the Snowflake system. The authors conducted
a manual analysis of different WebRTC applications to identify fea-
tures that could be used to fingerprint them. Their findings revealed
significant fingerprinting potentials in the DTLS and STUN/TURN
protocols used by WebRTC, including differences in cipher suites,
extensions, and certificate details.

The work of MacMillan et al. [18] is the most prominent work
on detecting Snowflake traffic by fingerprinting DTLS handshakes.

6https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-24
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They collected the largest data set to date (which is publicly avail-
able7) with 6,500 handshakes of different WebRTC based applica-
tions. They extracted features from DTLS fields and performed
classification with the random forest machine learning algorithm.
They found multiple ways of fingerprinting Snowflake: sending the
optional HelloVerifyRequest message, offering the supported_groups
extension in the ServerHello message, and not offering the renego-
tiation_info in the ServerHello message. Although their data set is
publicly available, their classification software is not. How they
collected the data set is unclear and is never explained in their
paper.

Chen et al. [8] and Holland et al. [15] also take a machine learn-
ing approach to discovering Snowflake. Both use the MacMillan
et al. data set of DTLS handshakes and claim high accuracy of de-
tection. To our knowledge these approaches has not been adopted
in the real world.

For fingerprinting, we consider only the DTLS handshake to be
in scope for this paper, not the encrypted record layer. We will also
not explore traffic pattern (flow) analysis (e.g. timings, packet size,
speed) such as Wang et al. [32] and Xie et al. [35]. Even though
they claim promising results, we believe it is difficult to know if the
statistical properties are of the DTLS implementation or the network
itself. Such approaches require highly-controlled environments to
not fingerprint the underlying network. Bocovich et al. [7] also
warn against this, as traffic analysis attacks have historically been
overestimated due to un-realistic base rates [31].

2.4 Fingerprint resistance
There are two main obfuscation techniques used in practice to
combat fingerprinting: mimicking and randomization [13].

Mimicking, also known as mimicry or steganography, aims to
replicate the behavior of a protocol. The goal is to make it chal-
lenging to distinguish between the genuine protocol and the ob-
fuscating protocol. Houmansar et al. [16] argue that mimicking
application layer protocols is particularly challenging and funda-
mentally flawed, a criticism summarized by the phrase “The parrot
is dead”.

Randomization, often referred to as polymorphism, involves
implementing random protocol features to make the traffic appear
dissimilar to any protocol or pattern that a censor might block.
The objective is to eliminate all statistical characteristics, causing
the traffic to resemble “junk” data. However, this approach can be
ineffective if the censor employs whitelist blocking, as the traffic
would not match any approved protocols. obfs48 is an example of
a pluggable transport that employs randomization for censorship
circumvention.

While Snowflake uses DTLS, the similarities with TLS make
it worth exploring the realm of TLS fingerprinting, and existing
mitigation techniques. For example, Sergey Frolov and Eric Wus-
trow developed the fingerprint-resistant uTLS library [14]. The
library employs multiple techniques for obfuscating traffic: low-
level access to the handshake, randomized ClientHello fingerprint,
mimicking ClientHello messages of other implementations and use

7https://github.com/kyle-macmillan/snowflake_fingerprintability
8https://gitlab.com/yawning/obfs4

of multiple fingerprints. For their mimicked fingerprints, they col-
lected fingerprints from real browsers and rely on volunteers to
update future fingerprints in the library.

2.5 Capabilities of censors
Tschantz et al. [28] did a study in 2016 to ground the evaluation of
circumvention approaches in empirical observations of real censors.
They found that censors prefer simple cost-effective solutions, with
mostly passive monitoring (e.g. DPI) and some active probing. They
suggest that censorship circumventors should concern themselves
more with low-cost exploits. We assume that a censor will prefer
simple, stateless and deterministic solutions to perform detection
and blocking. Our focus is to prevent such low-hanging fruit.

We further assume that a censor prefers passive fingerprinting
over active probing. The Great Firewall of China have been deploy-
ing active probing for Shadowsocks [4, 34] and obfs3 [9]. This is
probably due to it not being possible to perform passive field based
fingerprinting, because of the randomized nature of the protocols.
Active fingerprints are hard to discover, because you have to find a
bug or side-channel of the protocol. A censor would also have to
deploy infrastructure to send the fingerprint payloads. There have
not been any active attacks on Snowflake, as far as we know.

3 Fingerprinting-resistant Snowflake
Our primary objective is to reduce the fingerprintability of DTLS
when utilized within Snowflake. Several approaches can be con-
sidered to achieve this objective, such as protocol obfuscation or
traffic shaping to change data packet flows to mimic regular, non-
censored traffic. Traffic shaping is already supported in Snowflake,
but it has not been put to use yet [7]. Thus we looked towards
the DTLS handshake process that has been blocked by fingerprints
before. Apart from encrypting the handshake process, which is
only available in version 1.3 of DTLS, other techniques must be
developed to improve Snowflake’s resistance to fingerprinting.

To better understand the problem at hand, a DTLS fingerprint
discovery tool was created to simulate a censor discovering unique
fingerprints of Snowflake. The tool parses DTLS handshakes and
extracts features such as length, cipher suites, and extensions bytes
within the Hello messages. To discover fingerprints, the database
is queried as part of an automatic analysis step with two routines.
One routine finds unique values of fields which are identifying for
a certain implementation type, the other finds similar hex-strings
in the extensions of each type, so that they can be further manually
analyzed. This artifact was validated against the dataset by MacMil-
lan et al. [18] and found that extensions was the most prominent
feature for fingerprinting, as multiple researchers have pointed out
before [12, 18].

Considering the MacMillan et al. [18] dataset to be outdated,
we developed a continuous deployment (CD) setup with GitHub
Actions workflows for generating fresh DTLS-WebRTC handshakes
with the most recent version of popular browsers. The workflow
pulls the newest stable version of Firefox and Chrome on Ubuntu
every day. We use Selenium to automate the browsers to create
a simple WebRTC datatunnel simultaneously as we run a packet
capture. The captures are filtered for DTLS handshakes and com-
mitted to the repository. This can be used for mimicking DTLS

4
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handshake messages and as a data set for further research. The
pipeline can keep the mimicking functionality up-to-date with pop-
ular browsers (that usually silently update “themselves”). Validation
included comparing the handshakes to manually generated ones,
testing for consistency, and using the fingerprint discovery tool
to compare the automatically generated handshakes. This public
corpus of DTLS handshakes will grow over time and facilitates
studying the evolution of different implementation. A censor would
have access and the ability to do large scale collection of DTLS
traffic, so a publicly available data set is valuable for researchers to
keep up with their adversaries.

The final and most central of our contributions is a fingerprint-
resistant DTLS Go module that extends the Pion DTLS library to
offer features inspired by uTLS. To support this, we contributed
new capabilities to the Pion DTLS codebase, including hookable
handshake logic. These hooks allow external modules to intercept
and modify ClientHello, ServerHello and CertificateRequest messages
immediately before transmission. This preserves the Pion’s API
while enabling external modules like ours to extend handshake
behavior without maintaining a forked version of upstream, like
uTLS does.

Our library implements two main fingerprint-resistance tech-
niques for ClientHello messages (with others planned):

• Mimicry: This mode loads a target fingerprint (e.g., from
our generated browser handshakes) and reconstructs the
ClientHello message to match its fields, including the ci-
pher suite list, compression methods and extension bytes.
It aims to make Snowflake traffic indistinguishable from
the browser WebRTC implementation.

• Randomization: In this mode, we modify the original Clien-
tHellowith a combination of order permutation and picking
random values for cipher list and extensions, effectively gen-
erating unique messages that evade deterministic matching.

Wewanted to calculate the theoretical number of fingerprints our
randomization offered. Equation 1 is used for finding the amount of
possible permutations when randomizing the length of a list with
𝑛 elements.

𝑃 (𝑛) =
𝑛∑︁
𝑟=1

𝑛!
(𝑛 − 𝑟 )! (1)

Pion supports 8 ciphers which we pick a random amount of and
shuffle. The number of possible values for our randomized ciphers
list are therefore:

𝑃𝑐𝑖𝑝ℎ𝑒𝑟𝑠 = 𝑃 (8) = 109, 600 (2)

Our randomization mode only shuffles the order of extensions,
which we observed usually contained 7 extensions. We shuffle
and pick random values for the supported_groups, use_srtp and
signature_algorithms extensions with 3,4 and 7 possible values.
Additionally, we randomly pick one of 15 common values for the
APLN extension. The number of possible unique fingerprints for
randomized extensions are:

𝑃𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠 = 7! × 𝑃 (3) × 𝑃 (4) × 𝑃 (7) × 15
= 994, 218, 624, 000 (3)

We believe both 𝑃𝑐𝑖𝑝ℎ𝑒𝑟𝑠 and 𝑃𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠 are sufficiently large
to resist block-list fingerprinting. Our fingerprint discovery tool
was also employed to validate that the library did not produce any
distinguishable fingerprints, comparing it to a baseline of fresh
Snowflake traffic.

4 Results
We analyse the key findings of our approach in this section. It
includes a review of the DTLS handshakes that were collected over
the period of one year for Chrome and Firefox releases. We also
provide an evaluation of our DTLS implementation in deployed
Snowflake proxies, using both mimicking and randomization, and
compare them against standard proxies.

4.1 DTLS fingerprint evolution of browsers
In this section we present the results of capturing DTLS handshakes
from a WebRTC application in Chrome and Firefox over a year
(April 2024 to April 2025). As discussed in Section 3, these hand-
shakes were generated daily based on the latest available versions
of the browsers.

The data set contained 44 handshakes from Chrome version
124.0.6367.60 to 135.0.7049.84 and 30 handshakes from Firefox from
version 125.0.1 to 137.0.1. Unfortunately, we lost the captures of
about two months in October and November of 2024, thus not
having captures for Chrome version 130 and Firefox version 132.
With this dataset, we were able to use our fingerprint-discovery
tool and determine if there are unique fingerprints each handshake,
chronologically.

For the Firefox handshakes we found that until May 2024 there
was a constant fingerprint that identified the browser. However,
from version 127 released in May of 2024, DTLS 1.3 started being
used for WebRTC by default. As we did not notice this before
analysis, we only capturedDTLS 1.3 handshakes formost of the year,
although gathering handshakes from the DTLS 1.2 implementation
in the same time period would have been useful. In the analyzed
data, the extension bytes are unique each time as they include the
key_share extension containing unique key_exchanges (containing
public cryptographic keys). Despite the use of DTLS 1.3, we did not
identify any use of ECH in Firefox, which would further increase
privacy and security. In the few DTLS 1.2 handshakes we generated,
we discovered that the record_size_limit extension was present in
Firefox, which is not supported by Pion and is a certain way of
differentiating DTLS implementations.

DTLS 1.3 has been implemented in the boringSSL library, which
is used by Chrome. However, in this browser, it has not yet been
enabled by default as they are waiting for the WebRTC team9.

Analyzing the Chrome handshakes we found that from version
129.0.6668.58 the order of the extension list is randomized and thus
produces a unique fingerprint each time. This makes Chrome harder
to fingerprint by default. Before the randomization of the extension
list in mid-September 2024, we saw no change in fingerprint for
Chrome for a period of 5 months.

9https://boringssl.googlesource.com/boringssl/+/fa891990d11dec621e91514d92ab5c34181d313b/
ssl/ssl_versions.cc#159
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4.2 Snowflake measurements
This section presents measurements of Snowflake traffic. We begin
by introducing the metrics for the different types of proxies, as well
as the number of daily Snowflake users. Then we look at the traffic
captured while running distinct proxy configurations, each over
the span of 24 hours.

We used the statistics of Snowflake proxy types collected by the
brokers that is being used in the Tor Project10. These metrics are
according to the broker specification11 a count of the total number
of unique IP addresses of Snowflake proxies types that have been
polled. We assume that the count does not necessarily indicate that
they were used by a Snowflake client. This means that these proxies
were available for usage, but may not have been used to send traffic
to a Tor relay. We use the scripts by David Fifield for generating
graphs related to daily users of Snowflake12 in addition to our own
script for plotting unique IPs by type.

There are four different types of proxies available in the available
statistics: badge, standalone, webextension and iptproxy. The first
three are types we introduced in the background. The iptproxy13
is a pluggable transport (including Snowflake) proxy for iOS and
Android. The application seems to be a gomobile wrapper for plug-
gable transports that are implemented in Go. Since gomobile is
used, we assume the Pion library is used for DTLS, not the native
implementation of the mobile platforms.

Figure 3: Unique proxies by type from April 2024 to April
2025

Figure 3 show the total number of unique IP addresses per proxy
type. Assuming an average of around 175,000 proxies (cumulative)
over the past few months, with 100,000 attributed to iptproxy and
60,000 to webextensions, we can say that the distribution is 57%
for iptproxy and 35% for webextensions. This reveals that there
is only a small percentage (<8%) of active badge and standalone
proxies. It is important to note that the high observed number of
iptproxy proxies is partly due to the dynamic nature of mobile IP
addresses, which can artificially inflate the apparent availability of
these proxies.

10https://metrics.torproject.org/collector/archive/snowflakes/
11https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-
/blob/main/doc/broker-spec.txt
12https://gitlab.torproject.org/dcf/snowflake-graphs/
13https://github.com/tladesignz/IPtProxy

Figure 4: Daily Snowflake users fromApril 2024 to April 2025

The drop of Snowflake users starting in November 2024 has been
discussed in the community as blocking in Russia14 and is sus-
pected to be due to blocking domain fronting to phpmyadmin.net.
Additionally, we see a drop and a subsequent steady decline of
users from Iran in late December 2024. This might be due to Iran
lifting their ban on WhatsApp and Google Play [3], and therefore
reducing the interest in Snowflake.

During testing of our DTLS librarywe observed that the Snowflake
proxy tends to become the DTLS client during handshakes. To mea-
sure the stability and impact of our DTLS library manipulating
ClientHello messages, we deployed four different configurations
of Snowflake proxies: a standalone proxy baseline15, standalone
proxy with mimicking, standalone proxy with randomization and
Chrome16 with the Snowflake webextension17. Each of the proxies
were run continuously for 24h on the same machine18 with a static
IP (IPv4 and IPv6) and no NAT. We expect restricted NATing to be
more realistic for a proxy, but we chose unrestricted NAT to more
easily be able to be matched with any client.

For all the deployments, we saw that only between 6 and 8 DTLS
ClientHello messages were not sent from the proxies. Most of those
originated from known Internet scanners. In total, only 5 hand-
shakes not initiated by a ClientHello from the proxy, but rather
by the other peer, were completed. All of these handshakes came
from the same data center in the Netherlands. For the webexten-
sion, handshakes were not completed when the proxy received a
ClientHello.

Table 1 shows the number of handshake messages and the es-
timated failure rate of handshakes for each deployment. We as-
sume that a ChangeCipherSpec (CCS) message indicates a successful
handshake by starting an encrypted channel, and a emphHelloVer-
ifyRequest (HV) message triggers duplicate ClientHello (CH). For
calculating an estimated failure rate we used the following formula:

Failure Rate = 1 − #CCS
#CH − #HV − #CH from scanners

The baseline proxy configuration exhibits the highest traffic and
is the most stable among the tested setups. However, the amount
of traffic may vary over time due do varying demand, and the in-
creased number of connections is not significantly higher than
14https://github.com/net4people/bbs/issues/422
15Commit ae5bd528211f07ca4be8582571b5a33f11fcf853
16Version 135.0.7049.95
17Version 0.9.3
18Ubuntu 24.04.2 LTS (GNU/Linux 6.8.0-57-generic x86_64) with 4 virtual cores.
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Figure 5: Average simultaneous users of Snowflake by country from April 2024 to April 2025

mimicking or randomization. The mimicking option also demon-
strates considerable stability, regarding the amount of successful
handshakes. On the other hand, randomization appears to be error-
prone, likely due to the cipher list offering several ciphers that the
server rejects. Interestingly, the Chrome webextension generates
significantly fewer DTLS sessions. This may be attributed to the
standalone proxy’s ability to utilize concurrency in Go, allowing
multiple sessions to run in parallel. However, the reason behind
the Chrome’s proxy instability remains unknown.

Type # CH # SH # HV # CCS* Failed
Baseline 3136 1466 1456 1458 12.5%
Mimicking 2055 961 921 922 18.2%
Randomization 1678 709 702 708 27.0%
Chrome webext. 216 74 113 72 25.8%

Table 1: Number of DTLS handshake messages and hand-
shake failure rate from different Snowflake proxies running
for 24 hours. Asterisk indicates message being sent from the
proxy.

5 Lessons learned
This section provides the key takeaways from combining the knowl-
edge gained during the implementation of our artifacts together
with the results discussed in the previous section.

The evolution of browsers’ fingerprints has no noticeable
effect on Snowflake’s number of daily users. Despite having
observed two significant changes in the DTLS fingerprints from
Chrome and Firefox during the last year, this was not reflected in
the collected statistics. If new browser fingerprints had a strong
effect on Snowflake usage, we would presumably see drops in the
number of users when these changes occurred. However, in the per
country metrics in included in Figure 5, this is not the case.

A prompt adoption of DTLS 1.3 in both Snowflake and
our fingerprint-resistant library is needed to keep up with
browsers. Firefox’s roll-out of DTLS 1.3 for WebRTC introduced
some challenges for our library, namely in mimicking browser be-
haviour. Chrome seems to soon be ready to have DTLS 1.3 by default
too. Naively replaying extension data byte-for-byte is insufficient,

as certain unique session values may act as unique fingerprints
for our tool. Our initial proof-of-concept, which substituted the
public keys in the key_share extension with new keys, yielded lim-
ited success in completing handshakes. This highlights the need
for a proper implementation of the DTLS 1.3 extensions rather
than superficial modifications such as updating public keys with-
out integrating them into the handshake logic. Meanwhile, we
revised our fingerprint generation workflow to cap the maximum
DTLS version at 1.2 for WebRTC. This was achieved using the me-
dia.peerconnection.dtls.version.max setting in Firefox, allowing us
to maintain the stability of mimicking. In addition, the ECH feature
in DTLS 1.3 would prevent fingerprinting of extensions lists by
encryption. However, censors might be wiling to block DTLS 1.3
ECH19. Except that if browsers adopt ECH by default, the collateral
damage from blocking ECH might be too high, making it too costly
to be blocked by a censor.

Our fingerprint-resistant library is stable whenmimicking
DTLS 1.2 handshakes, while the randomization approach—
though more resistant to fingerprinting—tends to be less sta-
ble. As shown in Table 1, the failure rate for mimicking is within
the same order of magnitude as the baseline, while still supporting a
high number of clients. This suggests that mimicking is both stable
and not currently subject to blocking. We were even successful in
mimicking the record_size_limit extension added by Firefox and
not supported by Pion. Chrome’s fingerprint is evolving due to
extension order randomization. While this randomization improves
Chrome’s resistance to fingerprinting, it also makes accurate mim-
icking more difficult, as it requires parsing and correctly shuffling
the order of installed extensions.

The collected data shows that Chrome typically includes six ex-
tensions, leading to 6! = 720 possible permutations—each represent-
ing a unique ClientHello fingerprint. Our library also incorporates
randomization, not only in extension order but also in the number
of options selected from extension lists, the cipher suites advertised,
and the ALPN values. We estimate that this results in approximately
994, 218, 624, 000 unique permutations, significantly lowering the
likelihood of generating the same fingerprint repeatedly and thus

19https://gitlab.torproject.org/tpo/anti-censorship/censorship-analysis/-
/issues/40057#note_3184292
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being targeted by fingerprint-based blocking. As browsers increas-
ingly adopt extension-level randomization, censors are forced to
rely on more advanced DPI or traffic analysis techniques to identify
connections.

While our randomization increases resistance, it also seems to
correlate with a higher failure rate for both our library and Chrome.
For our library we expect to announce short cipher lists and exten-
sions that could be rejected by a server, explaining the failures. That
said, we still do not fully understand why Chrome web extensions
exhibit a higher failure rate than the baseline standalone proxy, as
they do not remove options like our library. An hypothesis is that
the webextensions may suffer from scalability issues.

Our library should be integrated in Snowflake proxies as
they produce theClientHellomessages during the DTLS hand-
shake. We previously believed that the Snowflake client was re-
sponsible for generating most of the ClientHellos, and thus assumed
our library would cover all cases of DTLS handshakes. However,
during testing observed that it is actually the proxy that assumes
the client role in the DTLS handshake, and the reason for us de-
ploying the fingerprint-resistant library at proxies. This behavior is
dictated by the SDP protocol. According to RFC 5763, the SDP offer
must include the setup:actpass attribute, and it is recommended that
the SDP answer uses the setup:active attribute [29]. The party des-
ignated as active is responsible for initiating the DTLS handshake
by sending the ClientHello. Since the Snowflake client is imple-
mented to always send the SDP offer, the proxy—in responding
with the SDP answer—becomes the active party and thus initiates
the handshake. If our library is adopted by Snowflake, we should
encourage operators of standalone proxies, or iptproxy, to configure
their deployments with appropriate randomization or fingerprint-
mimicking techniques.

Even with a sharp drop in the amount of proxies, it does
not seem to affect the number of Snowflake users. There was
a large drop of webextension proxies in May 2024 (see Figure 3) due
new opt-in consent required by the Mozilla’s Add-on store20. Even
with the large decline of proxies, we see no drop in users in the
same period in Figure 4. Thus we believe there is plentiful amount
of proxies to fulfill the needs of users.

Browser extensions make Snowflake resistant to Clien-
tHello fingerprinting. In previous datasets (e.g. MacMillan[18])
and earlier fingerprinting attempts, it was implied that the Clien-
tHello was consistently generated using the Pion library. However,
we have seen that the ClientHello is typically sent by the proxy
rather than the client itself. As shown in Figure 3, standalone prox-
ies make up only a small fraction of the total proxy pool with ipt-
proxy and webextensions being abundant. Maintaining a large pool
of webextension proxies enhances Snowflake’s resilience against
fingerprinting as the browser DTLS stack is used for ClientHello
messages.

Standalone proxies can serve more Snowflake clients per
volunteer than webextensions. Assuming each ChangeCipher-
Specmessage from the proxy indicates a successful DTLS handshake
for a new client, we observe that a standalone proxy can serve at

20https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake-
webext/-/issues/97

least 10 times more clients compared to those based on webexten-
sions. Over the past six months, there have been approximately
4,500 standalone proxies available daily. If each of these proxies can
serve 10 times the number of clients, they could collectively handle
nearly the same volume as webextensions, which average around
60,000 clients. If we further assume that iptproxy can serve only
as many clients as the Chrome extension—an intentionally conser-
vative estimate, since gomobile may leverage goroutines similarly
to standalone proxies—we estimate that approximately 28% of the
traffic could be handled by web extensions, with the remaining 72%
routed through the Pion DTLS stack.

We need metrics on which types of proxies are actually
being matched and successfully used by clients. Such metrics
would enable more effective troubleshooting of potential finger-
printing issues. For example, if we observe a decline in successful
connections for both iptproxy and standalone proxies, while we-
bextension proxies remain unaffected, we could reasonably infer
that fingerprinting of the Pion WebRTC stack may have occurred.

6 Ethics
The pursuit of anonymity and censorship circumvention through
technologies such as Snowflake raises significant ethical consid-
erations. While these tools are designed to promote free access to
information and protect users from oppressive tactics, they also
have the potential to be put to wrong use. The anonymity provided
by such technologies can be exploited to commit crimes, including
cyber-attacks, fraud, and other illicit activities, which we do not
endorse. It is crucial to acknowledge that while the intention behind
developing these tools is to uphold human rights and freedom of
expression, there exists a risk of their misuse. Researchers and de-
velopers must remain vigilant and ensure that their work is aligned
with ethical standards and legal frameworks.

During this project, trafficwas collected from deployed Snowflake
proxies over multiple days. The collected traffic was meticulously
filtered to isolate DTLS handshakes, while discarding the data traf-
fic to focus solely on the relevant aspects of the study. This paper
presents an analysis based on the filtered captures. To protect the
privacy of the users who connected to our proxies, the dataset
will not be released. This decision underscores our commitment to
ethical research practices and the safeguarding of user anonymity.
By maintaining strict privacy protocols, we aim to ensure that
our research contributes positively to the field of anti-censorship
technologies without compromising the security and privacy of
individuals.

7 Conclusion
This work presented a set of artifacts aimed at reducing the finger-
printability of DTLS traffic in Snowflake.We introduced a fingerprint-
resistant Go library extending the Pion DTLS implementation, en-
abling both mimicking DTLS-WebRTC implementations of real
browser handshakes and randomized ClientHello messages. Sup-
porting tools include a fingerprint discovery framework and a
pipeline for collecting up-to-date DTLS handshakes from Firefox
and Chrome. Our evaluation showed that mimicking the DTLS-
WebRTC implementation of browsers yields stable performance,
while randomization significantly expands the space of potential
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fingerprints, though at the cost of increased handshake failures.
Additionally, we observed that proxies, not clients, typically initiate
the DTLS handshake in Snowflake, clarifying where fingerprint-
resistancemechanisms should be applied. Despite changes in browser
fingerprints and proxy availability, Snowflake usage remained sta-
ble, suggesting resilience to evolving protocol behavior.

Our findings also emphasize the importance of preparing for
broader adoption of DTLS 1.3. As browsers increasingly migrate to
this version, Snowflake must adapt accordingly to maintain effec-
tiveness. DTLS 1.3 introduces new extension behaviors and features
like ECH,which alter fingerprint characteristics and challenge naive
mimicry approaches.

The obtained results demonstrate that the proposed modifica-
tions to Snowflake effectively reduced the distinguishability of
DTLS traffic, thereby enhancing its capability to bypass censorship.
This approach represents a step forward in the ongoing effort to
provide access to a free and open internet in regions with heavy
censorship. With our modifications, censors might look to other
techniques to discover Snowflake, such as more sophisticated DPI,
traffic analysis or look into other parts of the WebRTC stack to find
fingerprints.
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